Search results

1 – 10 of over 22000
Article
Publication date: 12 January 2023

Huimei Zhang, Jiawen Zhang, Yan Zhang, Xu Ye, Yuanyuan Li and Ping Wang

In this paper, a new flexible piezoresistive pressure sensor which uses non-woven fabric as the flexible substrate and sliver nanowires (AgNWs) as the conductive materials was…

Abstract

Purpose

In this paper, a new flexible piezoresistive pressure sensor which uses non-woven fabric as the flexible substrate and sliver nanowires (AgNWs) as the conductive materials was reported.

Design/methodology/approach

The compression test of the pressure sensors was carried out at different compression frequencies and found that the sensors had more than 5,000 times reusability at high frequency.

Findings

When pressure sensors were applied to different parts of the human body, such as fingers, elbows, knees and throat, the sensors respond differently to different degrees of movement.

Originality/value

The proposed pressure sensor has broad application prospects in the human motion detection.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 26 March 2024

Abdelmalek Saidoune, Hamza Houassine, Samir Bensaid, Nacera Yassa and Sadia Abbas

This paper aims to investigate the efficacy of teeth flux sensors in detecting, locating and assessing the severity of short-circuit faults in the stator windings of induction…

Abstract

Purpose

This paper aims to investigate the efficacy of teeth flux sensors in detecting, locating and assessing the severity of short-circuit faults in the stator windings of induction machines.

Design/methodology/approach

The experimental study involves inducing short-circuit winding turn variations on the induction machine’s stator and continuously measuring the RMS values across teeth flux sensors. Two crucial steps are taken for machine diagnosis: measurements under load operating conditions for fault detection and measurements under no-load conditions to determine fault location and severity.

Findings

The experimental results demonstrate that the proposed approach using teeth flux sensors is reliable and effective in detecting, locating and evaluating the severity of stator winding faults.

Research limitations/implications

While this study focuses on short-circuit faults, future research could explore other fault types and alternative sensor configurations to enhance the comprehensiveness of fault diagnosis.

Practical implications

The methodology outlined in this paper holds the potential to significantly reduce maintenance time and costs for induction machines, leading to substantial savings for companies.

Originality/value

This research contributes to the field by presenting an innovative approach that uses teeth flux sensors for a comprehensive fault diagnosis in induction machines. The originality lies in the effectiveness of this approach in providing reliable fault detection, location and severity evaluation.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 14 March 2024

Gülçin Baysal

The aim of this review is to present together the studies on textile-based moisture sensors developed using innovative technologies in recent years.

Abstract

Purpose

The aim of this review is to present together the studies on textile-based moisture sensors developed using innovative technologies in recent years.

Design/methodology/approach

The integration levels of the sensors studied with the textile materials are changing. Some research teams have used a combination of printing and textile technologies to produce sensors, while a group of researchers have used traditional technologies such as weaving and embroidery. Others have taken advantage of new technologies such as electro-spinning, polymerization and other techniques. In this way, they tried to combine the good working efficiency of the sensors and the flexibility of the textile. All these approaches are presented in this article.

Findings

The presentation of the latest technologies used to develop textile sensors together will give researchers an idea about new studies that can be done on highly sensitive and efficient textile-based moisture sensor systems.

Originality/value

In this paper humidity sensors have been explained in terms of measuring principle as capacitive and resistive. Then, studies conducted in the last 20 years on the textile-based humidity sensors have been presented in detail. This is a comprehensive review study that presents the latest developments together in this area for researchers.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 26 March 2024

Sajad Pirsa and Fahime Purghorbani

In this study, an attempt has been made to collect the research that has been done on the construction and design of the H2O2 sensor. So far, many efforts have been made to…

Abstract

Purpose

In this study, an attempt has been made to collect the research that has been done on the construction and design of the H2O2 sensor. So far, many efforts have been made to quickly and sensitively determine H2O2 concentration based on different analytical principles. In this study, the importance of H2O2, its applications in various industries, especially the food industry, and the importance of measuring it with different techniques, especially portable sensors and on-site analysis, have been investigated and studied.

Design/methodology/approach

Hydrogen peroxide (H2O2) is a very simple molecule in nature, but due to its strong oxidizing and reducing properties, it has been widely used in the pharmaceutical, medical, environmental, mining, textile, paper, food production and chemical industries. Sensitive, rapid and continuous detection of H2O2 is of great importance in many systems for product quality control, health care, medical diagnostics, food safety and environmental protection.

Findings

Various methods have been developed and applied for the analysis of H2O2, such as fluorescence, colorimetry and electrochemistry, among them, the electrochemical technique due to its advantages in simple instrumentation, easy miniaturization, sensitivity and selectivity.

Originality/value

Monitoring the H2O2 concentration level is of practical importance for academic and industrial purposes. Edible oils are prone to oxidation during processing and storage, which may adversely affect oil quality and human health. Determination of peroxide value (PV) of edible oils is essential because PV is one of the most common quality parameters for monitoring lipid oxidation and oil quality control. The development of cheap, simple, fast, sensitive and selective H2O2 sensors is essential.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 30 March 2010

Chen Mei

The purpose of this paper is to develop a capacitance vehicle weighing device. The key part of this device is the capacitance vehicle weighing sensor. This paper discusses the…

Abstract

Purpose

The purpose of this paper is to develop a capacitance vehicle weighing device. The key part of this device is the capacitance vehicle weighing sensor. This paper discusses the static and dynamic performance test of capacitance vehicle weighing sensor with emphasis, and provides theoretical analysis, in order to provide the tests and theoretical basis for the popularization and application of the vehicle weighing device.

Design/methodology/approach

The paper gives an introduction to the weighing sensor in respects of the structure design and measuring principles, with the emphasis on the static and dynamic performance of the testing processes. Then, the paper provides the corresponding testing processes and data with theoretical analysis.

Findings

This weighing sensor can be applied to static as well as dynamic tests thus the capacitance vehicle weighing device is practical and worthy of promotion and popularization.

Originality/value

The capacitance vehicle weighing device is characterized by its simple structure, simple measuring circuits, strong reliability in anti‐interference, small size and low cost. The static performance is of little repetitive error, and the use of software may efficiently solve the problems of non‐linearity and hysteresis. In dynamic measurement, the speed, acceleration and vibration of the vehicle produce little effect on the result, which can be neglected, thus being able to overcome the disadvantages of the traditional weighing method which is of low speed and great errors.

Details

Sensor Review, vol. 30 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 December 1994

D Hodgins

Outlines the development of an electronic nose for general applicationand examines it’s three major parts: a sensor array, a means of converting the sensor outputs into suitable…

498

Abstract

Outlines the development of an electronic nose for general application and examines it’s three major parts: a sensor array, a means of converting the sensor outputs into suitable signals for analysis, and a software analysis tool. Describes the sensor array, electronics and overall system design, the conducting polymer sensors and the computer hardware and software. Discusses the analysis techniques and results of tests carried out on various gases, vapours and liquids. Concludes that although much further work is required into sensors and analysis techniques it is anticipated that a growing number of companies will become interested in developing these systems.

Details

Sensor Review, vol. 14 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 7 September 2012

Yalei Liu, Xiaohui Gu, Yunmeng Lian and Heng Liu

The purpose of this paper is to demonstrate the theoretical relationship between the layout of four‐sensor dynamic acoustic array tracking system and systematic observation…

Abstract

Purpose

The purpose of this paper is to demonstrate the theoretical relationship between the layout of four‐sensor dynamic acoustic array tracking system and systematic observation accuracy, and provide an algorithm to determine the optimal arrangement of four‐sensor acoustic array and an indicator to evaluate acoustic array system measurement accuracy.

Design/methodology/approach

In the present paper, the measurement principle of the four‐sensor dynamic acoustic array tracking system is analyzed, and the system observation model and the conversion relationship between models are established. Subsequently, the optimization algorithm for the four‐sensor dynamic acoustic array is deduced, the theoretical optimal arrangement of the four‐sensor dynamic acoustic array tracking measurement system is obtained based on the optimal position dilution of precision function (PDOPF) of 2D target, and the static experimental study on sound‐source bearing estimation is designed. The theoretical results are compared with the experimental results of the present study.

Findings

The measurement accuracy of the four‐sensor dynamic acoustic array tracking system is largely dependent on the layout of the acoustic sensor. Theoretical studies and experimental results demonstrated that an optimal PDPOF can be used to analyze the rationality of the layout. It can also serve as an indicator for the layout of the four‐sensor dynamic acoustic array tracking system.

Originality/value

The PDOPF value is presented as an indicator for the evaluation of the four‐sensor dynamic acoustic array systematic observation accuracy based on theoretical analysis. The feasibility of the indicator and the rationality of the sensor layout in practical engineering application are verified through experimental studies on sound‐source bearing estimation. The higher the PDOPF value is, the lower the accuracy of the system will be.

Article
Publication date: 17 March 2014

Robert Bogue

– This article aims to provide an insight into recent deliberations on the possibility of a global sensor market reaching one trillion units per annum within the next decade.

1287

Abstract

Purpose

This article aims to provide an insight into recent deliberations on the possibility of a global sensor market reaching one trillion units per annum within the next decade.

Design/methodology/approach

Following an introduction, which includes details of the TSensors Summit, this article discusses existing high volume sensor applications with multi-billion unit growth prospects. It then considers certain new and emerging applications, including the Internet of Things. This is followed by technological considerations and a brief discussion.

Findings

The possibility of a global sensor market reaching one trillion units per annum within the next decade is the topic of serious debate. Several applications representing multi-billion levels have been identified and the ongoing TSensors Summit activities seek to identify further high volume, high growth uses and the factors that will stimulate them. While MEMS will play a central role, other, often new sensor technologies will be vital to achieving the trillion unit level.

Originality/value

This article provides a timely review of recent deliberations surrounding the feasibility of achieving a global, trillion sensor market.

Details

Sensor Review, vol. 34 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 27 June 2008

Giljae Lee, Yoonjoo Kwon, Woojin Seok and Minsun Lee

Recent wireless communication and electronics technology has enabled the development of low‐cost, low‐power, and multi‐functional sensor nodes. However, the fact that sensor nodes…

Abstract

Purpose

Recent wireless communication and electronics technology has enabled the development of low‐cost, low‐power, and multi‐functional sensor nodes. However, the fact that sensor nodes are severely energy‐constrained has been an issue and many energy‐efficient routing protocols have been proposed to resolve it. Cluster‐based routing protocol is one of them. To achieve longer lifetime, some cluster‐based routing protocols use information on GPS‐based location of each sensor node. However, because of high cost, not all sensor nodes can be GPS‐enabled. The purpose of this paper is to propose a simple dynamic clustering approach to achieve energy efficiency for wireless sensor networks (WSN).

Design/methodology/approach

Instead of using location information of each sensor node, this approach utilizes information of remaining energy of each sensor node and changes in the number of cluster head nodes dependent on the number of sensor nodes alive. Performance results are presented and compared with some related protocols.

Findings

The simulations described in the paper show that both residual energy of each sensor node and changing cluster head nodes depending on the number of sensor nodes alive are very critical factors to obtain performance enhancement in terms of lifetime and data transmission. Especially, in some special environment, the proposal has better performance than GPS‐enabled protocol.

Originality/value

The paper is of value in proposing a simple dynamic clustering approach to achieve energy efficiency for WSN.

Details

International Journal of Pervasive Computing and Communications, vol. 4 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 22 June 2012

Robert Bogue

The purpose of this paper is to provide details of a high sensitivity electric field sensor developed by Plessey Semiconductors.

Abstract

Purpose

The purpose of this paper is to provide details of a high sensitivity electric field sensor developed by Plessey Semiconductors.

Design/methodology/approach

Following a background to the sensor's origins, this paper describes the principle of operation and then discusses three recently launched products and their applications. Finally, a range of other potential uses are considered.

Findings

This shows that the sensors offer the unique ability to detect very low electric fields, with or without physical contact. Products have been launched which are finding applications in healthcare and motion detection but many other uses are anticipated in such diverse areas as material testing, forensics, automotive safety, analytical technology and even earthquake prediction.

Originality/value

The paper describes a new type of electric field sensor which has the potential to satisfy a diversity of medical and industrial applications.

Details

Sensor Review, vol. 32 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of over 22000