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Efficient Train Operation forSustainable Freight Transportation:

Optimizing Frequency with Fleet Size Constraints

Dong-Kyu Kim*, Minyoung Park**

Abstract

Sustainable transport has become a new paradigm offering efficient, equitable, and

pro-environment transport services. Many intermodal freight systems, especially those for

port-to-rail networks, consist of multiple routes starting from and ending at the same port in order

to exploit economies of scale. It is of interest to railway operators, therefore, to improve the

efficiency of the system by finding the optimal fleet size (the number of cars assigned to a route) and

frequency for each route. This paper proposes a model which determines the optimal frequency of

each route under the total fleet size constraint for the one-to-many distribution. Trains carry items

from one port to their destinations on their predetermined routes. This paper focuses on situations in

which items from one port are transported to many destinations via railroads. The tradeoffs between

transportation and inventory costs determine optimal frequency under the total fleet size and

capacity constraints. The optimal frequency and fleet size of each route are calculated and then

updated at the end of each step of the model. The model that we have developed in this paper is

validated by port-to-rail freight data from actual shipments in Korea. The results of the analysis

show that the proposed model can provide a more reliable and realistic representation of the real

one-to-many distribution than the other alternatives which are commonly used. This study not only

forms the theoretical basis of an effective and rational freight operation, but it also contributes to

the assessment of the existing and planned logistics systems.
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1. Introduction

Sustainable transport has become a new paradigm which offers efficient, equitable,

and pro-environment transport services. The railroad industry has been facing fierce

competition and decreasing market share in the area of freight transportation. In this

context, a more rational and efficient operation of the available resources is required. Many

studies related to train operation have been conducted in a variety of different areas such as

facility operation, standardization, pricing strategy, transportation policy and planning.

Assad (1980) has determined the most efficient train types and railway routes in order to

minimize the total cost. Eilon et al. (1971) formulated a model to determine optimal depot

locations, freight scheduling, loading and fleet size. Crainic et al. (1984) investigated the

three planning level stages (strategic, tactical and operational) and determined the best

service frequency and train make-up.

Hall (1993) classified the local area freight networks (LANs) topologies and showed

how the optimal topology for a common carrier depends on the demand characteristics.

When formulating train-scheduling and container allocating problems, Newman and Yano

(2000) considered a fixed charge for each train, variable transportation and handling costs

for each container and calculated yard storage costs as operating costs.

Choong et al. (2002) studied empty container management in order to minimize the

summation of moving costs between locations, holding at pools and bringing from outside

of the system. Groothedde et al. (2005) formulated economies of scale stemming from not

only the transport cost function for inter-hub flows which was suggested by O’Kelly and

Bryan (1998), but also handling and transshipment costs from hubs. Logistic costs of

demand which are transported via hubs have comprised the shipment time costs, transport

time costs, handling costs, inventory costs, and planning and control costs as well as

transport costs.

Janic (2007) has recently formulated the internal and external cost functions of

intermodal freight transport networks. Transport, time, handling, and external costs have

been formulated based on Daganzo (2005) and have been compared with the road freight

transport networks. The other recently published studies which we feel are related to this

topic include (Constantin et al. (1995), van Oudheusden and Zhu (1995), Marín and

Salmerón (1996), Furth and Rahbee (2000), Saka (2001), dell’Olio at al. (2006), and

Francis (2006)) are summarized in Table 1.

This paper focuses on physical distribution problems which occur when items at a

single origin need to be taken to multiple destinations, especially port-to-rail networks.

Trains start from and end at one port in order to exploit economies of scale. When a train



Efficient Train Operation for Sustainable Freight Transportation:

Optimizing Frequency with Fleet Size Constraints
65

returns to the port after its trip, it can also be reassigned to another route. The optimal fleet

size (i.e., the number of cars assigned to a route) and the frequency of each route can be

changed according to the forecasted demand variation under the total fleet size constraint.

The initial solution of the frequency of each route is calculated through EOQ (Economic

Order Quantity) trade-offs and is then updated in order to satisfy the total fleet size

constraints. The model in this paper is evaluated using real-world data from the Korea

Transport DataBase (KTDB) (http://www.ktdb.go.kr).

The remainder of this paper is organized as follows. In the next section, we discuss the

problem definition, cost function and model formulation. Next, the analytical approach and

solution algorithm are discussed. Then, we present empirical studies for evaluation of the

proposed model. Lastly, our summary and discussion are presented.

Table 1.

Existing pertinent literature

Literature Decision Variables
Objective Function

(Components)
Mode

(Network)

Constantin and
Florian (1995)

Higher level
-Line frequencies
Lower level
-Transit volume
-Waiting time

-Min. [Travel and waiting time]
-Constraint: Total expenditure (the
number of transit vehicles)

-Rail
(Toy network in
EMME/2)

van
Oudheusden
and Zhu (1995)

-Frequency scheduling
-Min. [Difference of frequencies]
(Required scheduled–
frequencies)

-Bus
(Bangkok)

Marín and
Salmerón
(1996)

-Frequency
-Route of trains

-Min. [Total costs]
(Routing, frequency, investment)

-Rail
(Toy network)

Furth and
Rahbee (2000)

-Stop spacing
-Min. [Total costs]
(Operating cost, riding/walking
time)

-Bus
(Boston)

Saka (2001)
-Stop spacing

-Min. [Total travel times (Fleet
size)]
(Acc/dec time, dwell time, signal
delay, moving time, miscellaneous
delay)

-Bus
(Baltimore)

dell'Olio,
Moura et al.
(2006)

Upper level
-Frequency
Lower level
-Stop spacing

-Min. [Total costs]
(Upper level: travel, company,
construction cost)
(Lower level: journey cost)

-Bus
(Santander)

Francis,
Smilowitz et al.
(2006)

-Visited number of nodes
-Traversed number of
links

-Min. [Costs Benefits]–
(Travel, stopping time)

-General
(Toy network)
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2. Model Development

2.1 Problem Definition

We define our problem as follows: Consider a situation in which  cars can be

assigned to  predetermined routes. We want to determine the optimal fleet size 
 (the

number of cars to be assigned to a route ) and the frequency 
 of each route 

(   ⋯ ). Trains start from and arrive at a port and stop at  stations while moving

along the route . The definition of our problem is illustrated in Figure 1.

The assumption of fixed routes is not strong since the routes cannot be changed in the

short run due to high construction costs. Each train must stop at all stations on its route and

the time and cost required for loading and unloading are assumed to be independent of the

amount of cargo. The amount of items varies depending on the destinations and time

periods while it is independent of the decision variables of the problem, which means that

the amounts are inelastic to changes in waiting time. In addition, all demands must be

carried out within the given time slots and there is therefore no cumulative excess demand.

Each train can be reassigned to another route after finishing its trip in order to adapt to

demand variation. Based on the assumptions mentioned above, we want to determine the

optimal fleet size and frequency of each route under the total fleet size and capacity

constraints. We can refine our problem definition as follows.

Objective: Minimize total costs which consist of transportation costs, stopping costs and

inventory costs

Given: All served routes

Demand from a port to all destinations

Time value of an item

Decision: Frequency and fleet size of each route

Constraints: Total fleet size, which affects the maximum frequency of each route

Maximum train capacity, which determines the minimum frequency of

each route
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Figure 1.

Problem definition

2.2 Cost Functions

The general classification of logistics costs has been developed by many scholars,

depending on the objectives of their research. The most important issue in cost

classification is “that in the final analysis all costs should be included and none double

counted” (Daganzo, 2005). In this study, the total cost of each route consists of four

components; transportation costs, stationary and pipeline inventory costs and stopping

costs. The notations used in this paper are as follows.

 = cost of a route 


 = transportation cost of a route 


 = stopping cost of a route 


 = stationary inventory cost of a route 


 = pipeline inventory cost a route 

 = unit transportation cost per length-frequency

 = unit stopping cost per stop

 = unit stopping time per stop
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 = total demand of a route 

 = total distance of a route 

 = the number of stations on a route 


 = journey distance of an item  shipped along a route 


 = the number of stops traversed by an item  shipped along a route 

 = the frequency that a route is traveled 

  = optimal frequency of a route  in an unconstrained condition


 = upper limit of frequency of a route 


  = lower limit of frequency of a route 


 = optimal frequency of a route  in a constrained condition


 = maximum capacity of the trains which move along a route 

 = velocity of a train which moves along a route 

 = time horizon of interest

 = time value of an item

 = criterion for the integral constraint of frequency

 = the number of trains in a fleet (total fleet size)


 = optimal fleet size of a route 

Transportation costs or variable costs stem from train movements and have been

developed in various forms, in accordance with their particular objectives and applications.

We express transportation costs as a function of the frequency and distance of each route as

presented by Daganzo (2005) and Zanic (2007).


 =  ․  ․  ․  [1]

Stopping costs consist of handling costs and time spent, which occur when trains stop

at the scheduled stations. As mentioned above, the handling costs at stations are assumed to

be independent of the amount of items which are loaded and unloaded. It should also be

noted that time spent is not related to the facilities or to the trains, but to the time it takes to

move items. The stopping cost of route  can therefore be written as follows.


 =  ․ ･･  

･･
  




  [2]

The two terms in the blanket represent handling costs and time spent during stops,

respectively.
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Stationary inventory costs indicate time which is spent waiting and are usually

formulated as a function of the headway of shipment trains. The frequency of trains is a

reciprocal of the headway, and stationary inventory costs can therefore also be formulated

as a function of frequency. Transportation costs increase but stationary inventory costs

decrease with an increase in frequency. Stationary costs can therefore be expressed as a

function of the following frequency.


 

･
･ [3]

Pipeline inventory costs are the travel time costs of shipped items. Pipeline inventory

costs can be calculated by dividing the summation of the journey distance of the items

shipped along a route by the velocity of the train and thus can be formulated as Equation [4].


 

･
･
  




 [4]

As mentioned above, the total cost of a route    can be expressed as Equation [5].

In this equation,  is influenced by the properties of network (and  ), demand (,

 , and 
 ),and the operation ( and  ) of each route.

  





 

 ･･･  ･･･  ･･
  




 
･

･ 

･
･
  






[5]

Figure 2 illustrates the relationship between several elements and the cost components

of routes ,  . The cost components transportation, stopping, pipeline and stationary–

inventory are influenced by two or more elements. The decision variable in this study is–

the number of the frequency of each route ,  , which is related to the operation of the

train. Figure 3 shows an example of the transportation procedure of an item  along the

route to its destination. The item starts from a port and travels to its destination along the

given route.
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Figure 2.

Relationship components included in cost 

Figure 3.

Transportation procedure of an item  along route 

3. Solution

3.1 Optimal Frequency and Minimum Cost in an Unconstrained Condition

In Equation [5], the handling costs during stops and the pipeline inventory costs are

independent of our decision variable,  . We can arrange Equation [5] according to the

descending powers of  as follows.
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  ･･ ･ ･ 

 [6]

where,

  ･･･
  




 


･
  

 


 

If we do not consider the integral constraint and the maximum and minimum

constraints of our decision variable,  , we can apply the Economic Order Quantity (EOQ)

trade-off to Equation [6] (see Daganzo (2005), and Blumenfeld et al. (1985)) and then

directly calculate the optimal frequency and minimum cost of each route in an

unconstrained condition as in Equations [7] and [8], respectively.

 



･  

･ 

･
[7]

   ･･･ ･

･ ≥･

･･･
･

 [8]

As shown in Equation [7], the optimal frequency of each route in an unconstrained

condition is proportional to the square root of its demand divided by the stopping and

transportation costs per frequency,  ․ ․ . This ratio can also be

interpreted as a reciprocal of the “unit frequency cost” of an item along route . The

optimal frequency of a route therefore decreases as unit frequency cost increases. In

Equation [8], the minimum cost in an unconstrained condition is proportional to the square

root of the following elements; stopping and transportation costs per frequency and time

value and demand of the items shipped along route . It is reasonable to assume that the

unit transportation cost and the stopping cost are constant since we consider the situation in

which items are shipped by train. The optimal frequencies of routes along which items with

the same time value and average journey distance are shipped, therefore, will have identical

results.

Figure 4 shows the change in cost per item of a route ,  , according to its

frequency. Each solid line indicates a set of points with the same unit frequency cost and

the dots represent the minimum cost per item and the optimal frequency at each condition.

As unit frequency cost increases, the minimum cost per item increases while the optimal

frequency decreases. Thus, the efficiency of transport systems can be improved by

assigning more trains to routes with larger demand and lower costs;

Figure 5 shows the change in the optimal frequency and the minimum cost of a
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passenger according to the traffic density. As mentioned above, as traffic density increases,

the optimal frequency and minimum cost increases and decreases, respectively, but the rates

of both decrease. The operator can thus determine whether to increase or decrease the

frequency and fleet size of each route based on traffic density.

3.2 Integral and Maximum/Minimum Constraints on Frequencies

Let us define the following symbols in order to present the constraints on frequencies.

ë û

é ùî
í
ì

=

=

AA

AA

n larger thaor   toequal isat integer th minimum the

an smaller thor   toequal isat integer th maximum the

Figure 4.

Change in average cost,  , according to frequency
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Figure 5.

Optimal frequency and the minimum average cost during unconstrained conditions

We first consider the maximum and minimum constraints for the frequencies. The

minimum frequency, 
  , is determined by the train capacity and the amount of items

being shipped. The minimum frequency of a route  can be calculated as Equation [10].


  ⌈ 

 ⌉ [10]

On the other hand, the maximum constraints for the frequency, 
 is influenced by

the fleet size and the cycle time of the route. T∆    ･  he cycle time of a

route consists of the travel time and the stopping time during a trip.. The maximum

frequency of a route  is expressed as Equation [11].


  ⌊ 

 ⌋⌊  ･
 ⌋ [11]
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Now, we will focus on the integral property of the frequency. If the optimal frequency

in Equation [7], ⌊ ⌋or ⌈ ⌉ in order to minimize the cost of the route . The

difference between total costs according to the two integers, ∆ are calculated as

follows.

( ) ( )ë û ( )ë û

( ) ( )é ù ( )é ù
( )é ù ( )ë û( )
( )é ù ( )ë û

( ) ( )é ù ( )ë û[ ]

( )é ù ( )ë û( )
( )é ù ( )ë û

( ) ( ) ( )é ù ( )ë û

( )é ù ( )ë û( )
( )é ù ( )ë û

( ) ( ){ } ( )é ù ( )ë û[ ]
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[12]

In Equation [16], the difference between two integers, ⌈ 
 ⌉⌊ ⌋ , have

the value of either 0 or 1. If   is an integer, ⌊ ⌋ is equal to

⌈ ⌉∆   and then we can choose either one of them. If it is not an integer,

we should check the sign of ∆ Using Equation [7], we choose ⌊ ⌋ if the product

of ⌈ ⌉and ⌊ ⌋are equal to or larger than the square of the optimal frequency

in an unconstrained condition,   ∆ ≤  Otherwise we choose ⌈ ⌉ . The

optimal integer value of the frequency which minimizes the total cost can be expressed as

follows.

( )ë û ( )

( )é ùï
î

ï
í

ì £

=
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, if
*

ur

Iurur

r

f

Cff

f

[13]

where,

( )
{ }

( )é ù ( )ë ûururI

r

st

r

tr

r

ur

ffC

LcDc

Qtv
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Equation [13] can solve the optimal frequency independently of whether   is an

integer or not. Therefore, the optimal frequency and the minimum total cost of a route  in

a constrained condition can be calculated as follows.

{ }
*

**

2 r

r
rr

st

r

tr

rr
f

Qtv
fLcDcAC

×
+××+×+=

[14]
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              if
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,min               if
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Figure 6 shows the optimal frequency and minimum cost of a route  according to the

unit frequency cost per item in a constrained condition. The minimum cost in a constrained

condition is larger than it is in an unconstrained condition as in the following cases: i) the

optimal frequency in an unconstrained condition is smaller than the minimum frequency,

which depends on the trains capacity and the amount of items, as in case 1) in Figure 6.

Then, 
  

  ; ii) the optimal frequency in an unconstrained condition is not a integer

value as in cases 2) or 3) in Figure 6. Then, 
 ⌊ ⌋or ⌈ ⌉ ; iii)the optimal

frequency in an unconstrained condition is larger than the maximum frequency, which is

determined by the fleet size and the cycle time of the route, as in case 4) in Figure 6. Then,


  

 . It should also be noted that the difference in minimum costs between a

constrained and an unconstrained condition is negligible unless the unit frequency cost per

item is relatively high. The situation which we are considering in this paper is that the items

are shipped by trains from a port to their destinations and that the unit frequency cost per

item is therefore relatively smaller than that of the other modes. These results show that the

optimal frequency in an unconstrained condition can be used without considering the
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integral property in low-cost transportation systems. On the other hand, it should be noted

that the minimum frequency constraints are one of the most important influences on the

optimum.

Figure 6.

Optimal frequency and minimum average cost under constrained conditions

3.3 Decision of Optimal Fleet Size

In Equation [15], the optimal frequency of a route is restricted by its maximum value,

which is influenced by its fleet size. The optimal fleet size of each route  
 can be

calculated as follows if we don’t consider the total fleet size constraint,



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≤ 
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If the summation of the optimal fleet size over all routes ,(=1,2,....R) is equal to or

smaller than the total fleet size  , we can accept the current solution as being optimum.

Otherwise, we should decrease the frequencies of some routes in order to satisfy the total
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fleet size constraint. We are introducing the following rules in order to choose the route of

the frequency which will be reduced (see Figure 7).

- We cannot reduce the frequency of route  of which 
 is equal to its minimum

frequency, 
  (Case 1 in Figure 7).

- We can reduce the frequency of route  of which 
 is equal to or smaller than


  without any increase in the cost (Case 2 in Figure 7).

- We can also reduce the frequency of route  of which 
 is equal to 

  at the

expense of additional costs (Case 3 in Figure 7).

Figure 7.

Selection rules for routes with reduced frequency

After reducing the frequencies of some routes which are influenced by the second rule,

we have to calculate the change in the minimum cost of route ,  according to the

change in its maximum frequency, 
  in the third rule, if the summation of the optimal

fleet size is still larger than the total fleet size.  can then be calculated as follows.
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After calculating and comparing the overall routes which were influenced by the third

rule, we selected a route  where  is the minimum, and decreased its optimal frequency


 by 1. We iterate this procedure until the summation of the optimal fleet size is equal to

or smaller than the total fleet size  The Solution procedure in this study is illustrated in

Figure 8.
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Figure 8.

Solution procedure
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4. Empirical Analysis

4.1 Data

In this section, the empirical analysis on the developed model is shown based on the

real data which was provided by the Korea Transport DataBase (KTDB)

(http://www.ktdb.go.kr) .In this study , we selecte dsixrail ways from amongall of the routes

taking into consideration the length of the overlapping sections and the properties of the

network and demand. The available data were daily demands in 2004 and the loading and

unloading patterns of items during different time periods were generated based on a field

survey. The unit costs and default values from the empirical studies are summarized in

Table 2.

Table 2.

Unit costs and default values from the empirical studies

Routes R01 R02 R03 R04 R05 R06

# of stations 3 4 4 5 6 2

Distance (km) 15.7 21.3 12.4 20.5 31.2 17.5

Symbol Unit Value Symbol Unit Value

trc [$/frequency-km] 36.89 tv [$/item-hr] 13.6

stc [$/stop] 4.89 rv [km/hr] 40

stt [hr] 0.25 max

rk [item/train] 600

4.2 Results

The results of the empirical studies are presented in Table 3, Table 4 and Table 5.

Table 3 shows the optimal solutions for real data under the constraint that the total fleet size

is 30. The frequencies for R04 and R05 in the unconstrained condition were the minimum

frequencies of their routes, respectively. The greatest increase in cost occurred on the R02

while the greatest decrease in frequency occurred on the R03 in comparison to the

unconstrained condition.

Table 4 and Table 5 show the effects of the change in demand and time value,
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respectively. Table 4 shows that the optimal frequencies in the unconstrained condition

were the same as those in Table 5, while those in the constrained condition increased in

spite of the increase in demand. The frequencies of all routes were optimized at their

minimum frequencies and the results of Table 5 indicate the effects of change in time value.

According to the increase in time value from 13.6 to 40.3, both frequencies and fleet sizes

should be increased. This result shows that the investment in the purchase of trains can cut

down on expenses for logistics and inventories.

Table 3.

Optimal solutions for real dat1a (S=30)

Route
Unconstrained Constrained (=30)

Frequency Fleet size Cost Frequency Fleet size Cost

R01 4 5 4,918 3 4 5,056

R02 3 5 5,169 2 4 5,565

R03 6 8 5,620 4 6 5,870

R04 3 6 5,117 3 6 5,117

R05 3 7 6,890 3 7 6,890

R06 4 4 5,113 3 3 5,172

Total 23 35 32,828 18 30 33,670

Table 4.

Optimal solutions for 30% increased demand (S=32)

Route
Unconstrained Constrained (=32)

Frequency Fleet size Cost Frequency Fleet size Cost

R01 4 5 5,576 3 4 5,933

R02 3 5 5,889 3 5 5,889

R03 6 8 6,343 5 7 6,492

R04 3 6 5,845 3 6 5,845

R05 3 7 7,789 3 7 7,789

R06 4 4 5,756 3 3 6,290

Total 23 35 37,199 20 32 37,977
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Table 5.

Optimal solutions for high value-added Items (S=35, time value=40.3)

Route
Unconstrained Constrained (=35)

Frequency Fleet size Cost Frequency Fleet size Cost

R01 7 8 8,220 4 5 9,224

R02 5 8 8,648 3 5 9,886

R03 9 12 9,401 5 7 11,299

R04 5 9 8,566 3 6 9,879

R05 5 12 11,583 3 7 12,777

R06 6 6 8,514 4 4 9,319

Total 37 55 54,932 22 34 62,383

5. Conclusions

Frequency and fleet size are the most important decision variables which have an
influence on the efficiency of freight transportation systems. It is of interest to railway
operators, therefore, to improve the efficiency of the system by optimizing the fleet size and
frequency for each route. This paper proposes a model which determines the optimal
frequency of each route under the total fleet size constraint from a single origin to many
destinations. The tradeoff between transportation and inventory costs determine the optimal
frequency under the total fleet size and the capacity constraints.

The model that we developed in this paper is expected to contribute significantly to
several decisions which must be made by transit operators, such as the allocation of
additional fleet size, the determination of flexible frequency corresponding with
time-variable demand, and the acquisition of additional trains. The model developed in this
paper is expected to provide more reliable and realistic results as well as providing more
precise parameter estimations.

Some issues not addressed in this paper deserve further research. Various operational
alternatives should be investigated in order to improve the efficiency of freight systems,
such as vehicle mixing and skip-stop scheduling.
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