To read this content please select one of the options below:

The Collapse Behaviour of Cold-formed Steel Portal Frames at Elevated Temperatures

aHanna + Hutchinson Consulting Engineers Ltd, 68 Bow Street, Lisburn, United Kingdom, BT28 1AL
bQueen’s University Belfast, School of Planning Architecture & Civil Engineering, David Keir Building, Stranmillis Road, Belfast, United Kingdom, BT9 5AG ,
cDepartment of Civil and Environmental Engineering, The University of Auckland, Auckland 1142, New Zealand
dQueen’s University Belfast, School of Mechanical and Aerospace Engineering, Ashby Building, Stranmillis Road, Belfast, United Kingdom, BT9 5AH ,
eCapital Steel Ltd, Unit 1, Mary Street, Johnstone, United Kingdom, PA5 8BZ.
fSteel Research Group, School of Civil Engineering, Campus B, Chong Qing University, 174 Sha Zheng Street, Chong Qing, P. R.China, 400045

Journal of Structural Fire Engineering

ISSN: 2040-2317

Article publication date: 17 June 2015

173

Abstract

This paper describes the results of non-linear elasto-plastic implicit dynamic finite element analyses that are used to predict the collapse behaviour of cold-formed steel portal frames at elevated temperatures. The collapse behaviour of a simple rigid-jointed beam idealisation and a more accurate semi-rigid jointed shell element idealisation are compared for two different fire scenarios. For the case of the shell element idealisation, the semi-rigidity of the cold-formed steel joints is explicitly taken into account through modelling of the bolt-hole elongation stiffness. In addition, the shell element idealisation is able to capture buckling of the cold-formed steel sections in the vicinity of the joints. The shell element idealisation is validated at ambient temperature against the results of full-scale tests reported in the literature. The behaviour at elevated temperatures is then considered for both the semi-rigid jointed shell and rigid-jointed beam idealisations. The inclusion of accurate joint rigidity and geometric non-linearity (second order analysis) are shown to affect the collapse behaviour at elevated temperatures. For each fire scenario considered, the importance of base fixity in preventing an undesirable outwards collapse mechanism is demonstrated. The results demonstrate that joint rigidity and varying fire scenarios should be considered in order to allow for conservative design.

Keywords

Citation

Johnston, R.P.D., Sonebi, M., Lim, J.B.P., Armstrong, C.G., Wrzesien, A.M., Abdelal, G. and Hu, Y. (2015), "The Collapse Behaviour of Cold-formed Steel Portal Frames at Elevated Temperatures", Journal of Structural Fire Engineering, Vol. 6 No. 2, pp. 77-102. https://doi.org/10.1260/2040-2317.6.2.77

Publisher

:

Emerald Group Publishing Limited

Related articles