A model to predict deposition parameters for directed energy deposition: part I theory and modeling
ISSN: 1355-2546
Article publication date: 23 July 2019
Issue publication date: 21 August 2019
Abstract
Purpose
Directed energy deposition (DED) with laser powder-feed is an additive manufacturing process that is used to produce metallic components by simultaneously providing a supply of energy from a laser and mass from a powder aerosol. The breadth of alloys used in DED is currently limited to a very small range as compared to wrought or cast alloys. The purpose of this paper is to develop the new alloys for DED is limited because current models to predict operational processing parameters are computationally expensive and trial-and-error based experiments are both expensive and time-consuming.
Design/methodology/approach
In this research, an agile DED model is presented to predict the geometry produced by a single layer deposit.
Findings
The utility of the model is demonstrated for type 304 L stainless steel and the significance of the predicted deposition regimes is discussed. The proposed model incorporates concepts from heat transfer, welding and laser cladding; and integrates them with experimental fits and physical models that are relevant to DED.
Originality/value
The utility of the model is demonstrated for type 304 L stainless steel and the significance of the predicted deposition regimes is discussed.
Keywords
Citation
Knapp, C.M., Lienert, T.J., Burgardt, P., Hochanadel, P.W. and Kovar, D. (2019), "A model to predict deposition parameters for directed energy deposition: part I theory and modeling", Rapid Prototyping Journal, Vol. 25 No. 6, pp. 998-1006. https://doi.org/10.1108/RPJ-08-2018-0221
Publisher
:Emerald Publishing Limited
Copyright © 2019, Emerald Publishing Limited