Evaluating the effects of indoor air quality on teacher performance using artificial neural network
Journal of Engineering, Design and Technology
ISSN: 1726-0531
Article publication date: 30 November 2022
Issue publication date: 24 March 2023
Abstract
Purpose
A building's Indoor Air Quality (IAQ) has a direct impact on the health and productivity on its occupants. Understanding the effects of IAQ in educational buildings is essential in both the design and construction phases for decision-makers. The purpose of this paper is to outline the impact air quality has on occupants' performance, especially teachers and students in educational settings.
Design/methodology/approach
This study aims to evaluate the effects of IAQ on teachers' performances and to deliver air quality requirements to building information modelling-led school projects. The methodology of the research approach used a quasi-experiment through questionnaire surveys and physical measurements of indoor air parameters to associate correlation and deduction. A technical college building in Saudi Arabia was used for the case study. The study developed an artificial neural network (ANN) model to define and predict relationships between teachers' performance and IAQ.
Findings
This paper contains a detailed investigation into the impact of IAQ via direct parameters (relative humidity, ventilation rates and carbon dioxide) on teacher performance. Research findings indicated an optimal relative humidity with 65%, ranging between 650 to 750 ppm of CO2, and 0.4 m/s ventilation rate. This ratio is considered optimum for both comfort and performance
Originality/value
This paper focuses on teacher performance in Saudi Arabia and used ANN to define and predict the relationship between performance and IAQ. There are few studies that focus on teacher performance in Saudi Arabia and very few that use ANN in data analysis.
Keywords
Citation
Alzahrani, H., Arif, M., Kaushik, A.K., Rana, M.Q. and Aburas, H.M. (2023), "Evaluating the effects of indoor air quality on teacher performance using artificial neural network", Journal of Engineering, Design and Technology, Vol. 21 No. 2, pp. 604-618. https://doi.org/10.1108/JEDT-07-2021-0372
Publisher
:Emerald Publishing Limited
Copyright © 2022, Emerald Publishing Limited