Abstract
Purpose
This study investigates the dynamic production structure of the Japanese manufacturing industry by using the adjustment cost approach. The study is to shed some light on the unique dynamic structure of the Japanese manufacturing industry. The study attempts to help design and predict industrial policies that are implemented to enhance domestic investments by the Japanese government.
Design/methodology/approach
This study obtains a system of dynamic factor demand and output supply equations by applying the dual approach to the intertemporal value function as represented by the Hamilton–Jacobi equation. By using industrial panel data for 1973–2012 of the Japanese manufacturing industry, the study estimates the system of the behavioral equations and corresponding elasticities. The study uses hypothesis tests and dynamic elasticities to investigate the dynamic structure of the Japanese manufacturing industry.
Findings
Estimation results show that labor and capital are quasi-fixed variables that adjust about 0.2 percent annually to the long-run optimum levels. Estimated adjustment rates are very slow as often presumed about the Japanese manufacturing industry, which uses lifetime employment practice and slow decision-making process in investment decisions. The results also show that output supply and factor demand elasticities vary greatly depending on time horizon. Factor demand increases when its own price increases in the short run, suggesting that factor adjustment is mostly determined factor prices in the past due to sluggish factor adjustment. However, factor demand becomes a normal downward-sloping curve in the long run as factor adjustment gets completed.
Originality/value
Japanese manufacturing firms hire employees through lifetime contract to exploit the benefits of dynamic learning-by-doing and execute investments carefully considering all the possible impacts. Under the strategy, adjustment costs for changing workers and capital stock are minimized. Dynamic adjustment model is expected to shed some light on the unique dynamic structure of the Japanese manufacturing industry. However, researches regarding the dynamic factor adjustment of the Japanese manufacturing industry are hard to find. This study is expected to fill the research vacuum.
Keywords
Citation
Kim, S. (2021), "Dynamic factor demand in the Japanese manufacturing industry", Journal of Asian Business and Economic Studies, Vol. 28 No. 1, pp. 20-30. https://doi.org/10.1108/JABES-12-2019-0123
Publisher
:Emerald Publishing Limited
Copyright © 2020, Sangho Kim
License
Published in Journal of Asian Business and Economic Studies. Published by Emerald Publishing Limited. This article is published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this licence may be seen at: http://creativecommons.org/licences/by/4.0/legalcode
1. Introduction
The Japanese manufacturing industry has endured intense transformation since the 1970s. The manufacturing industry restructured itself successfully toward an energy-saving industry after oil shocks in the 1970s, and it introduced automatic production process to cope with eroding price competitiveness after the Plaza Accord in 1985. It tried to eliminate overcapacity after the burst of the bubble in the early 1990s, and it undertook strong investments to utilize information technology (IT) since the 2000s. It plunged into depression after the world economic crisis in 2007, and it has been the focus of government industrial policy to boost its competitiveness.
Considering its active transformation, the problem of resource adjustment in the Japanese manufacturing industry can be adequately investigated within a dynamic adjustment cost framework. In this regard, this paper can shed some light on the production structure of the Japanese manufacturing industry.
Continuity of the Japanese manufacturing industry is well known to the world as Japanese firms continue their businesses over generations through booms and busts. The firms endeavor to make perfect their products over the long haul by improving their practices and processes step by step. They hire employees through lifetime contract to exploit the benefits of dynamic learning-by-doing and execute investments carefully considering all the possible impacts. Under the strategy, adjustment costs for changing workers and capital stock are minimized. On the downside, however, factor adjustments are likely to be lumpy due to the lack of frequent adjustments. Dynamic adjustment model is expected to shed some light on the unique dynamic structure of the Japanese manufacturing industry.
The dynamic model provides a consistent theoretical basis for explaining manufacturing investment patterns based on the dynamic optimization of economic agents. Despite their significant implication, researches regarding the dynamic factor adjustment of the Japanese manufacturing industry are hard to find. This study is expected to fill the research vacuum.
In dynamic factor demand models, behavioral equations can be obtained either primarily from the first-order optimization conditions of the Hamilton–Jacobi equation (Berndt et al., 1981; Mortensen, 1973; Nadiri and Prucha, 1989; Treadway, 1970) or dually by applying the envelop theorem to the equation (Epstein, 1981; Epstein and Denny, 1983; McLaren and Cooper, 1980). This study obtains a system of dynamic factor demand and output supply equations by applying the dual approach to the intertemporal value function as represented by the Hamilton–Jacobi equation. By using industrial panel data for 1973–2012 of the Japanese manufacturing industry, the study estimates the system of the behavioral equations and corresponding elasticities. Previous studies applied dynamic factor demand model to empirically investigate the production structure of various industries. For example, Berndt et al. (1981), Epstein and Denny (1983) and Nadiri and Prucha (1996) investigated the US manufacturing industry, and Taylor and Monson (1985), Howard and Chunway (1988) and Vasavada and Chambers (1986) applied the model to the US agricultural industry. These studies used a dynamic factor demand system to test the existence of adjustment costs and dynamic interaction between factor demands. These studies showed that the dynamic factor demand model can deliver factor adjustments responding to changing economic environments. This is very important in accurately analyzing the impacts of industrial policy of the government on factor investment.
Following previous empirical studies, this study will test the hypothesis whether there exists adjustment costs in the Japanese manufacturing industry and whether factor adjustments interact dynamically or not. The study will also investigate what characterizes the structure of the Japanese manufacturing industry, which has not yet been pursued. Currently, the Japanese government applies a set of structural reform and industrial policies to enhance domestic investments. Even though these industrial policies are less heralded than expansionary monetary and fiscal policies, these are a vital part of Abenomics that prepared three arrows to attack economic depression[1]. In particular, the government reduced corporate tax rate from 38 percent to about 30 percent since Prime Minister Abe took office in 2012. The government further reduced it by 5–10 percent for the firms that raised wages by more than 3 percent or invested in selected new technologies in 2018.
In analyzing impacts of industrial policies on investments, the dynamic factor adjustment model can provide an empirical basis for policy analysis in predicting input and output adjustments brought by changing relative prices through industrial policies.
Empirical results of this study show that adjustment coefficients for labor and capital are very low, suggesting the existence of great adjustment costs inherent in the Japanese manufacturing industry. The results also show that elasticities of output supply and factor demand vary greatly depending on time horizon and that there exists disembodied technical change in labor even after the input is adjusted for quality.
The study suggests that policy makers should consider time dimension to assess policy impacts accurately when implementing industrial policies that affect output supply and factor demand. Furthermore, the Japanese government should apply policy measures large enough to overcome sluggish factor adjustment to successfully affect factor investments. In this respect, this study confirms a great corporate tax reduction of 8–18 percent executed by the current government to boost corporate investments.
This study is organized as follows. Section 2 provides a theoretical background for dynamic dual model and gives the functional form of the estimation model. Section 3 discusses the data and estimation results. Section 4 presents the conclusions.
2. The dynamic factor demand
A perfectly competitive firm maximizes the current stream of future profits over the infinite time horizon at a base period
The value function
A sequence of static optimization problems linked over time can replace the dynamic optimization problem (1), assuming that the firm expects the prices denoting actual market at time t to persist indefinitely. Therefore, decisions made in period t are based on information available in that period containing all relevant information about future prices. Now the static optimization problem can be defined by the Hamilton–Jacobi equation:
The Hamilton–Jacobi equation enables us to convert the dynamic problem in (1) into a more manageable form. Especially, the value function is identified as the discounted present value of the current profit plus the marginal value of optimal change in net investment. According to Epstein (1981), the properties of
In addition to the regularity properties of the value function, the value function should be affine in capital for consistent aggregation across firms, satisfying
In estimation, a modified general Leontief function is used to specify the value function because the Leontief function satisfies the above requirements and maintains linear homogeneity in prices and concavity in quasi-fixed inputs. The modified generalized Leontief function can be defined as follows:
The dynamic factor demand for the quasi-fixed inputs (5) can be rewritten as follows:
Thus, the optimal net investment demand vector is consistent with the multivariate flexible accelerator model with constant adjustment coefficient (Nadiri and Rosen, 1969).
3. Data and empirical results
Data and variables
The data used in this paper represent a balanced panel of Japanese manufacturing industries taken from the Japan Industrial Productivity (JIP) database 2015. Based on the database, a panel of 52 manufacturing industries for 1973–2012 is compiled, from which all the variables required for estimation can be constructed. The sample period starts from the early 1970s in which the Japanese manufacturing dominated the world with successful structural reforms after the oil shocks in the 1970s. Thus, the sample encompasses the dynamic adjustment of manufacturing sector of the Japanese economy through booms in 1980s, structural transformation in 1990s after the burst of bubble in the early 1990s, IT innovation in the 2000s and two quantitative easing monetary policies before and after the world economic crisis in 2007.
For the estimations, labor input (
Wage rate (
Parameter estimation and hypothesis test
Table I presents the parameter estimates of the value function (6) obtained by applying the feasible generalized nonlinear least square (FGNLS) method to the system of Eqs (3), (4) and (5), assuming constant real discount rate of 4 percent. In the full model, the symmetry of the value function is imposed with
The adjustment rates for labor
The estimations suggest that the Japanese manufacturing industry is very slow in moving the number of employees and capital stock toward the long-run optimal levels. The estimations are consistent with business practices of Japanese manufacturing firms that prefer gradual improvement (Kaizen) to rapid innovation. The firms endeavor to make perfect their products over the long haul by improving their practices and processes step by step. They take time to fully utilize technology embodied in machinery and equipment, and they try to modify or fine-tune them to fit their jobs. Because adapting to new capital is slow and thorough, the firms execute investments carefully considering all the possible impacts. On the other hand, craftsmanship is highly valued; so the firms hire employees through lifetime contract to exploit the benefits of dynamic learning-by-doing. After recruiting new employees, the firms try to train and educate them extensively. Therefore, adjustment costs for changing workers and capital stock are great for Japanese manufacturers, which can be minimized through gradual adjustment[8]. In this respect, the estimations confirm the sluggish investment behavior of the Japanese manufacturing industry.
Table II presents hypothesis tests for dynamic nature of factor demand for the Japanese manufacturing industry, along with tests about its technological progress. All the tests are nested on the full model assuming symmetricity of the value function by using the likelihood-ratio test.
Independent adjustment occurs when each quasi-fixed input adjusts to its optimum level independently with
The null hypothesis of no technical change,
Short-run and long-run elasticities
Base on the coefficient estimates of the full model, short-run and long-run elasticities are estimated to summarize the dynamic behavior of output supply and input demands. Table III reports estimated elasticities of output supply and input demands for the Japanese manufacturing industry for selected periods.
Own-price output supply elasticity is about 0.0216 in the short run and 0.1578 in the long run. Own-price elasticity of demand for material input is 0.0039 in the short run and −0.0635 in the long run, whereas the elasticities for labor and capital are 0.0000 and 0.0001, respectively in the short run and −0.0024 and −0.0429 in the long run, respectively.
All the elasticities become much larger in the long run, compared to those in the short run. Especially, the demand for both labor and capital does not respond to own-price changes with almost zero elasticity in the short run. The demand for labor and capital is still inelastic in the long run even though its size is much larger in the long run than in the short run. Noticeably, factor input demand responds positively to its own-price changes for every factor in the short run, but the demand becomes negative in the long run. For dynamic models, profit-maximizing behavior does not require input demand to be negative theoretically (Treadway, 1970; Caputo, 1990)[9].
Factor-price output elasticity is the most responsive to capital and the least responsive to labor both in the short run and long run. All the factor inputs are very weak substitutes in production in the short run, except material input and capital, but all of them become complements in the long run. Relation between any pair of factors becomes much stronger in the long run than in the short run, as any cross-price long-run elasticities are much greater than their short-run counterparts.
Table IV reports estimated short- and long-run elasticities of output supply and input demands for the Japanese manufacturing industry by four technology sectors following OECD (2011) to consider difference in investment owing to technology disparity.
Noticeably, the demand for labor is the least elastic for the high-technology sector in the long run whereas the demand for capital is the most elastic, compared with the other sectors, in the long run. The estimations suggest that a large and growing number of firms in the high-technology sector are venture or IT firms consisting mostly of manpower of technicians, programmers, engineers and researchers. These firms concentrate on research activity in designing new products, outsourcing a large portion of manufacturing process. Because high technology firms become more specialized in R&D than manufacturing, the firms require less capital as technology level increases. Thus, the demand for labor is relatively less inelastic for the high-technology sector than the other sectors because quality labor is necessity for the high-technology sector. However, firms in the high-technology sector are most flexible in investing in capital.
On the other hand, for firms for traditional manufacturing in the medium-technology sectors, their production is capital intensive. The sectors utilize machinery and equipment greatly with large plants and assembly lines, and the demand for capital is more elastic than the other sectors.
4. Conclusions
By applying a dynamic factor demand model to the Japanese manufacturing industry, estimation results show that labor and capital are quasi-fixed variables that adjust about 0.2 percent annually to the long-run optimum levels. Estimated adjustment rates are very slow as often presumed about the Japanese manufacturing industry, which uses lifetime employment practice and slow decision-making process in investment decisions.
Labor and capital factors are augmented with quality indexes to allow for embodied technical progress in estimation, but disembodied technical change still remains to be observed for labor. This suggests that a portion of technical change is disembodied or quality indexes do not fully represent technical change itself.
The results also show that elasticities of output supply and factor demand vary greatly depending on time horizon. Factor demand increases when its own price increases in the short run, suggesting that factor adjustment is mostly determined by factor prices in the past due to sluggish factor adjustment. However, factor demand becomes a normal downward-sloping curve in the long run as factor adjustment is completed. Labor and capital are substitutes in the short run but become complements in the long run.
Policy makers should consider time dimension in implementing policy measures that affect output supply and factor demand to assess their impacts accurately. The Japanese government should apply policy measures large enough to boost factor investments when implementing an industrial policy because manufacturers respond to policy shocks very reluctantly to reduce factor adjustment cost. In this respect, this study positively confirms a great corporate tax reduction of 8–18 percent adopted by the current government to boost corporate investment since 2012.
Finally, output loss that firms should bear during the adjustment process provides another concern for policy makers when trying to boost the economy through investment expansion. For this, an industrial policy should be announced well in advance to provide manufacturing firms with sufficient time to prepare for their future adjustments to policy shocks. This can enhance the speed of factor adjustment and reduce the adjustment costs borne by manufacturers during the transition period.
FGNLS estimates for parameters of the value function for dynamic factor demand for Japanese manufacturing
Parameter | Full model | Model | |
---|---|---|---|
Independent adjustment | No dynamic adjustment+ | ||
7.2964 (0.3001) | 6.1051 (0.2979) | 3.1037 (0.2113) | |
0.4158 (0.0333) | 0.4675 (0.0342) | −0.1707 (0.0245) | |
−4.6188 (0.2122) | −3.7933 (0.2102) | −1.9420 (0.1475) | |
−0.3292 (0.0236) | −0.3623 (0.0241) | 0.1000 (0.0170) | |
−0.0423 (0.0009) | −0.0465 (0.0009) | −1 | |
−0.0014 (0.0001) | 0 | 0 | |
0.0643 (0.0106) | 0 | 0 | |
−0.0420 (0.0017) | −0.0366 (0.0015) | −1 | |
0.1677 (0.2195)* | 0.2987 (0.2211)* | −0.8869 (0.2499) | |
35.468 (1.0485) | 35.655 (1.0530) | 30.401 (1.1770) | |
−0.0383 (0.3530)* | −0.1884 (0.3537)* | 1.1431 (0.4319) | |
−17.977 (1.0277) | −18.036 (1.0275) | −13.228 (1.1862) | |
−0.6908 (1.7487)* | −7.1286 (1.5821) | −7.8888 (1.8559) | |
−0.2311 (0.2392)* | −0.3775 (0.2411)* | 1.0402 (0.2538) | |
−6.9543 (20.455)* | −46.7443 (23.911)* | 185.157 (11.313) | |
−13.532 (1.4010) | −13.156 (1.4025) | −18.423 (1.4121) | |
5.7817 (0.4487) | 5.8268 (0.4490) | 4.3263 (0.5120) | |
−5.5390 (1.0085) | −5.3021 (1.0094) | −8.7593 (1.0246) | |
0.1641 (0.0178) | 0.1595 (0.0178) | 0.2300 (0.0179) | |
−0.0715 (0.0128) | −0.0686 (0.0128) | −0.1141 (0.0129) | |
0.0084 (0.0222)* | 0.0905 (0.0201) | 0.0936 (0.0236) | |
0.0652 (0.2600)* | 0.5645 (0.3041)* | −2.3992 (0.1438) |
Note(s): *Except those denoted by star, all the variables are statistically significant at the 1 percent significance level. +In the model that has no dynamic adjustment, both independent adjustments,
Hypothesis tests for dynamic factor demand for Japanese manufacturing industry
Null hypotheses | Test statistics | Critical value | Decision |
---|---|---|---|
Independent adjustment | 413 | Rejected | |
Instantaneous adjustment of labor | 14.367 | Rejected | |
Instantaneous adjustment of capital | 121.37 | Rejected | |
No technological change | 132.92 | Rejected | |
No disembodied technological change in labor | 22.28 | Rejected | |
No disembodied technological change in capital | −73.10 | Accepted |
Note(s): All tests are based on the full model in which symmetricity of
Elasticity of short- and long-run output supply and input demand for the Japanese manufacturing industry for selected periods
Quantity | Year | Elasticity with respect to the price of | |||
---|---|---|---|---|---|
Output | Material | Labor | Capital | ||
Short run | |||||
Output | 1973–1990 | 0.0220 | −0.0052 | −0.0001 | −0.0167 |
1991–2000 | 0.0216 | −0.0052 | −0.0001 | −0.0163 | |
2001–2012 | 0.0212 | −0.0054 | −0.0001 | −0.0157 | |
1973–2012 | 0.0216 | −0.0053 | −0.0001 | −0.0163 | |
Material | 1973–1990 | 0.0074 | 0.0041 | 0.0000 | −0.0115 |
1991–2000 | 0.0072 | 0.0041 | 0.0000 | −0.0112 | |
2001–2012 | 0.0068 | 0.0034 | 0.0000 | −0.0102 | |
1973–2012 | 0.0072 | 0.0039 | 0.0000 | −0.0110 | |
Labor | 1973–1990 | −0.0002 | 0.0001 | 0.0000 | 0.0001 |
1991–2000 | −0.0002 | 0.0001 | 0.0000 | 0.0001 | |
2001–2012 | −0.0002 | 0.0001 | 0.0000 | 0.0001 | |
1973–2012 | −0.0002 | 0.0001 | 0.0000 | 0.0001 | |
Capital | 1973–1990 | −0.0002 | 0.0001 | 0.0000 | 0.0001 |
1991–2000 | −0.0002 | 0.0001 | 0.0000 | 0.0001 | |
2001–2012 | −0.0002 | 0.0001 | 0.0000 | 0.0001 | |
1973–2012 | −0.0002 | 0.0001 | 0.0000 | 0.0001 | |
Long run | |||||
Output | 1973–1990 | 0.1572 | −0.0713 | −0.0039 | −0.0821 |
1991–2000 | 0.1540 | −0.0718 | −0.0037 | −0.0785 | |
2001–2012 | 0.1617 | −0.0792 | −0.0038 | −0.0788 | |
1973–2012 | 0.1578 | −0.0738 | −0.0038 | −0.0802 | |
Material | 1973–1990 | 0.1369 | −0.0613 | −0.0033 | −0.0723 |
1991–2000 | 0.1341 | −0.0618 | −0.0032 | −0.0691 | |
2001–2012 | 0.1406 | −0.0680 | −0.0033 | −0.0693 | |
1973–2012 | 0.1374 | −0.0635 | −0.0033 | −0.0706 | |
Labor | 1973–1990 | 0.0843 | −0.0409 | −0.0024 | −0.0410 |
1991–2000 | 0.0823 | −0.0414 | −0.0023 | −0.0386 | |
2001–2012 | 0.0875 | −0.0459 | −0.0023 | −0.0393 | |
1973–2012 | 0.0842 | −0.0422 | −0.0024 | −0.0397 | |
Capital | 1973–1990 | 0.0930 | −0.0455 | −0.0034 | −0.0441 |
1991–2000 | 0.0916 | −0.0461 | −0.0032 | −0.0422 | |
2001–2012 | 0.0973 | −0.0512 | −0.0033 | −0.0429 | |
1973–2012 | 0.0933 | −0.0470 | −0.0034 | −0.0429 |
Elasticity of short- and long-run output supply and input demand for the Japanese manufacturing industry by technology sectors
Quantity | Year | Elasticity with respect to the price of | |||
---|---|---|---|---|---|
Output | Material | Labor | Capital | ||
Short run | |||||
Output | Low technology | 0.0225 | −0.0055 | −0.0001 | −0.0169 |
Medium-low tech | 0.0213 | −0.0053 | −0.0001 | −0.0159 | |
Medium-high tech | 0.0217 | −0.0052 | −0.0001 | −0.0164 | |
High technology | 0.0206 | −0.0050 | −0.0001 | −0.0156 | |
Material | Low technology | 0.0069 | 0.0043 | 0.0000 | −0.0111 |
Medium-low tech | 0.0070 | 0.0037 | 0.0000 | −0.0107 | |
Medium-high tech | 0.0072 | 0.0041 | 0.0000 | −0.0113 | |
High technology | 0.0078 | 0.0032 | 0.0000 | −0.0110 | |
Labor | Low technology | −0.0002 | 0.0001 | 0.0000 | 0.0001 |
Medium-low tech | −0.0002 | 0.0001 | 0.0000 | 0.0001 | |
Medium-high tech | −0.0002 | 0.0001 | 0.0000 | 0.0001 | |
High technology | −0.0002 | 0.0001 | 0.0000 | 0.0001 | |
Capital | Low technology | −0.0002 | 0.0001 | 0.0000 | 0.0001 |
Medium-low tech | −0.0002 | 0.0001 | 0.0000 | 0.0001 | |
Medium-high tech | −0.0002 | 0.0001 | 0.0000 | 0.0001 | |
High technology | −0.0002 | 0.0001 | 0.0000 | 0.0001 | |
Long run | |||||
Output | Low technology | 0.1522 | −0.0734 | −0.0039 | −0.0748 |
Medium-low tech | 0.1608 | −0.0770 | −0.0038 | −0.0801 | |
Medium-high tech | 0.1554 | −0.0723 | −0.0039 | −0.0792 | |
High technology | 0.1670 | −0.0725 | −0.0036 | −0.0909 | |
Material | Low technology | 0.1325 | −0.0631 | −0.0034 | −0.0660 |
Medium-low tech | 0.1398 | −0.0662 | −0.0032 | −0.0704 | |
Medium-high tech | 0.1353 | −0.0622 | −0.0033 | −0.0698 | |
High technology | 0.1453 | −0.0624 | −0.0031 | −0.0797 | |
Labor | Low technology | 0.0801 | −0.0420 | −0.0024 | −0.0357 |
Medium-low tech | 0.0865 | −0.0444 | −0.0023 | −0.0398 | |
Medium-high tech | 0.0831 | −0.0416 | −0.0024 | −0.0392 | |
High technology | 0.0928 | −0.0422 | −0.0022 | −0.0484 | |
Capital | Low technology | 0.0892 | −0.0469 | −0.0034 | −0.0389 |
Medium-low tech | 0.0962 | −0.0495 | −0.0032 | −0.0435 | |
Medium-high tech | 0.0925 | −0.0464 | −0.0034 | −0.0428 | |
High technology | 0.1012 | −0.0469 | −0.0032 | −0.0512 |
Notes
The two expansionary policies are referred as two arrows, and a package of policies including the industrial policies are called as the third arrow.
The long-run demand vector for the quasi-fixed inputs is solved by setting
Disembodied technical change is captured by vector
Refer to the JIP database for detailed explanation of the measurement of variables.
In the JIP database, there are two variables representing the total labor costs: compensation to employees and total labor cost. Among the two, the total labor cost is used to calculate wage rate because this paper is interested in dynamic adjustment of labor demand. However, two variables are highly correlated with the correlation coefficient of 0.972. Two variables do not make any difference in estimation either.
An unrestricted model was also estimated without restricting the symmetricity, but covariance matrix does not have full rank, failing to produce all the standard errors for coefficient estimates.
To check the robustness of estimates, lower future discount rates with 2 percent to reflect low Japanese interest rate is used in estimation, producing very small adjustment rates for labor and capital with −0.003 and 0.008, respectively. Also, estimation is done with restricted period after 1991 when overcapacity problem became serious, and adjustment rates for labor and capital remain very small with −0.007 and 0.002, respectively.
Adjustment cost discussed above can be referred as internal difficulties of capital adjustment. Adjustment cost also arises from external obstacles to investment including price pressure on capital supply. For details, see Eisner and Strotz (1963).
Adjustment cost of quasi-fixed factors can cause a firm to increase (decrease) the demand for factor input as its price rises (falls) if the demand is determined in the past when the price is low (high).
References
Berndt, E.R., Fuss, M. and Waverman, L. (1981), “The substitution possibilities for energy: evidence from U.S. and Canadian manufacturing industries,” in Berndt, E.R. and Field, B.C. (Eds), Model and Measuring Natural Resource Substitution, MIT Press, Cambridge, Massachusetts, MA, pp. 230-58.
Blackorby, C. and Schworn, W. (1982), “Aggregate investment and consistent intertemporal technologies”, Review of Economic Studies, Vol. 49, pp. 595-614.
Caputo, M.R. (1990), “Comparative dynamics via envelop methods in variational calculus”, Review of Economic Studies, Vol. 57, pp. 689-697.
Eisner, R. and Strotz, R. (1963), “The determinants of business investment,” in Suits, D.B., et al., Impacts of Monetary Policy, Prentice-Hall, Englewood Cliffs, New Jersey, pp. 60-233.
Epstein, L.G. (1981), “Duality theory and functional forms for dynamic factor demands”, Review of Economic Studies, Vol. XLVIII, pp. 81-95.
Epstein, L.G. and Denny, M.S. (1983), “The multivariate flexible accelerator model: its empirical restriction and an application to U.S. manufacturing”, Econometrica, Vol. 51, pp. 647-674.
Howard, W.H. and Chunway, C.R. (1988), “Dynamic adjustment in the U.S. Dairy industry”, American Journal of Agricultural Economics, Vol. 70, pp. 837-847.
McLaren, K.R. and Cooper, R.J. (1980), “Intertemporal duality: application to the theory of the firm”, Econometrica, Vol. 48, pp. 1755-1762.
Mortensen, D. (1973), “Generalized costs of adjustment and dynamic factor demand theory”, Econometrica, Vol. 41, pp. 657-665.
Nadiri, M.I. and Prucha, I.R. (1989), “Dynamic factor demand models, productivity measurement, and rates of return: theory and an empirical application to the U.S. bell system”, NBER Working Papers 3041, National Bureau of Economic Research.
Nadiri, M.I. and Prucha, I.R. (1996), “Estimation of depreciation rate of physical and R and D capital in the U S total manufacturing sector”, Economic Inquiry, Vol. 34, pp. 43-56.
Nadiri, M.I. and Rosen, S. (1969), “Interrelated factor demands”, American Economic Review, Vol. 59, pp. 457-471.
OECD (2011), ISCI Rev.3 Technology Intensity Definition: Classification of Manufacturing Industries into Categories Based on R&D Intensities, Directorate for Science, Technology and Industry, Economic Analysis and Statistics Division, Paris.
Taylor, T.G. and Monson, M.J. (1985), “Dynamic factor demands for aggregate southeastern United States agriculture”, Southern Journal of Agricultural Economics, Vol. 2, pp. 1-9.
Treadway, L.G. (1970), “Adjustment costs and variable inputs in the theory of the competitive firm”, Journal of Economic Theory, Vol. 2, pp. 329-347.
Vasavada, U. and Chambers, R.G. (1986), “Investment in U.S. Agriculture”, American Journal of Agricultural Economics, Vol. 68, pp. 950-960.
Acknowledgements
Financial support from JSPS KAKENHI [Grant Number 17K03745] by the Japan Society for the Promotion of Science of Research is gratefully acknowledged. This is a revised version of the paper presented at the 1st Asia Conference on Business and Economic Studies, Ho Chi Minh City, Vietnam, September 8, 2018. I thank two anonymous referees for helpful comments and suggestions and session participants at several conferences.