CRIB conditional on gender: nonparametric ROC curve
International Journal of Health Care Quality Assurance
ISSN: 0952-6862
Article publication date: 7 October 2014
Abstract
Purpose
The purpose of this paper is to use the kernel method to produce a smoothed receiver operating characteristic (ROC) curve and show how baby gender can influence Clinical Risk Index for Babies (CRIB) scale according to survival risks.
Design/methodology/approach
To obtain the ROC curve, conditioned by covariates, two methods may be followed: first, indirect adjustment, in which the covariate is first modeled within groups and then by generating a modified distribution curve; second, direct smoothing in which covariate effects is modeled within the ROC curve itself. To verify if new-born gender and weight affects the classification according to the CRIB scale, the authors use the direct method. The authors sampled 160 Portuguese babies.
Findings
The smoothing applied to the ROC curves indicates that the curve's original shape does not change when a bandwidth h=0.1 is used. Furthermore, gender seems to be a significant covariate in predicting baby deaths. A higher value was obtained for the area under curve (AUC) when conditional on female babies.
Practical implications
The challenge is to determine whether gender discriminates between dead and surviving babies.
Originality/value
The authors constructed empirical ROC curves for CRIB data and empirical ROC curves conditioned on gender. The authors calculate the corresponding AUC and tested the difference between them. The authors also constructed smooth ROC curves for two approaches.
Keywords
Citation
Filipa Mourão, M., Cristina Braga, A. and Nuno Oliveira, P. (2014), "CRIB conditional on gender: nonparametric ROC curve", International Journal of Health Care Quality Assurance, Vol. 27 No. 8, pp. 656-663. https://doi.org/10.1108/IJHCQA-04-2013-0047
Publisher
:Emerald Group Publishing Limited
Copyright © 2014, Emerald Group Publishing Limited