To read this content please select one of the options below:

Fabric defect detection based on sparse representation of main local binary pattern

Zhoufeng Liu (School of Electronic and Information Engineering, Zhongyuan University of Technology, Zhengzhou, China)
Lei Yan (School of Electronic and Information Engineering, Zhongyuan University of Technology, Zhengzhou, China)
Chunlei Li (School of Electronic and Information Engineering, Zhongyuan University of Technology, Zhengzhou, China)
Yan Dong (School of Electronic and Information Engineering, Zhongyuan University of Technology, Zhengzhou, China)
Guangshuai Gao (School of Electronic and Information Engineering, Zhongyuan University of Technology, Zhengzhou, China)

International Journal of Clothing Science and Technology

ISSN: 0955-6222

Article publication date: 5 June 2017

287

Abstract

Purpose

The purpose of this paper is to find an efficient fabric defect detection algorithm by means of exploring the sparsity characteristics of main local binary pattern (MLBP) extracted from the original fabric texture.

Design/methodology/approach

In the proposed algorithm, original LBP features are extracted from the fabric texture to be detected, and MLBP are selected by occurrence probability. Second, a dictionary is established with MLBP atoms which can sparsely represent all the LBP. Then, the value of the gray-scale difference between gray level of neighborhood pixels and the central pixel, and the mean of the difference which has the same MLBP feature are calculated. And then, the defect-contained image is reconstructed as normal texture image. Finally, the residual is calculated between reconstructed and original images, and a simple threshold segmentation method can divide the residual image, and the defective region is detected.

Findings

The experiment result shows that the fabric texture can be more efficiently reconstructed, and the proposed method achieves better defect detection performance. Moreover, it offers empirical insights about how to exploit the sparsity of one certain feature, e.g. LBP.

Research limitations/implications

Because of the selected research approach, the results may lack generalizability in chambray. Therefore, researchers are encouraged to test the proposed propositions further.

Originality/value

In this paper, a novel fabric defect detection method which extracts the sparsity of MLBP features is proposed.

Keywords

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61202499, No. 61379113, No. 61440031), the project of Henan Provincial Key Science and Technology Research (No. 142300410042), and Zhengzhou Science and Technology Leader Project (131PLJRC643).

Citation

Liu, Z., Yan, L., Li, C., Dong, Y. and Gao, G. (2017), "Fabric defect detection based on sparse representation of main local binary pattern", International Journal of Clothing Science and Technology, Vol. 29 No. 3, pp. 282-293. https://doi.org/10.1108/IJCST-04-2016-0040

Publisher

:

Emerald Publishing Limited

Copyright © 2017, Emerald Publishing Limited

Related articles