Assessment of modelling strategies for film cooling
International Journal of Numerical Methods for Heat & Fluid Flow
ISSN: 0961-5539
Article publication date: 2 May 2017
Abstract
Purpose
Effusion cooling represents one the most innovative techniques for the thermal management of aero-engine combustors liners. The huge amount of micro-perforations implies a significant computational cost if cooling holes are included in computational fluid dynamics (CFD) simulations; therefore, many efforts are reported in literature to develop lower-order approaches aiming at limiting the number of mesh elements. This paper aims to report a numerical investigation for validating two approaches for modelling film cooling, distinguished according to the way coolant is injected (i.e. through either point or distributed mass sources).
Design/methodology/approach
The approaches are validated against experimental data in terms of adiabatic effectiveness and heat transfer coefficient distributions obtained for effusion cooled flat plates. Additional reynolds-averaged naver stokes (RANS) simulations were performed meshing also the perforation, so as to distinguish the contribution of injection modelling with respect to intrinsic limitations of turbulence model modelling.
Findings
Despite the simplified strategies for coolant injection, this work clearly shows the feasibility of obtaining a sufficiently accurate reproduction of coolant protection in conjunction with a significant saving in terms of computational cost.
Practical/implications
The proposed methodologies allow to take into account the presence of film cooling in simulations of devices characterized by a huge number of holes.
Originality/value
This activity represents the first thorough and quantitative comparison between two approaches for film cooling modelling, highlighting the advantages involved in their application.
Keywords
Acknowledgements
This work was carried out during the Master Thesis of Alessandro Frontani, whose contribution is gratefully acknowledged. The authors would like to acknowledge also the valuable support offered by Dr Luca Andrei.
Citation
Mazzei, L., Andreini, A. and Facchini, B. (2017), "Assessment of modelling strategies for film cooling", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 27 No. 5, pp. 1118-1127. https://doi.org/10.1108/HFF-03-2016-0086
Publisher
:Emerald Publishing Limited
Copyright © 2017, Emerald Publishing Limited