Dimension-adaptive algorithm-based PCE for models with many model parameters
ISSN: 0264-4401
Article publication date: 24 August 2019
Issue publication date: 24 August 2019
Abstract
Purpose
To present the models with many model parameters by polynomial chaos expansion (PCE), and improve the accuracy, this paper aims to present dimension-adaptive algorithm-based PCE technique and verify the feasibility of the proposed method through taking solid rocket motor ignition under low temperature as an example.
Design/methodology/approach
The main approaches of this work are as follows: presenting a two-step dimension-adaptive algorithm; through computing the PCE coefficients using dimension-adaptive algorithm, improving the accuracy of PCE surrogate model obtained; and applying the proposed method to uncertainty quantification (UQ) of solid rocket motor ignition under low temperature to verify the feasibility of the proposed method.
Findings
The result indicates that by means of comparing with some conventional non-invasive method, the proposed method is able to raise the computational accuracy significantly on condition of meeting the efficiency requirement.
Originality/value
This paper proposes an approach in which the optimal non-uniform grid that can avoid the issue of overfitting or underfitting is obtained.
Keywords
Acknowledgements
This work is supported by the National Natural Science Foundation of China under Grant No.11262014.
Citation
Li, Y., Li, H. and Wei, G. (2019), "Dimension-adaptive algorithm-based PCE for models with many model parameters", Engineering Computations, Vol. 37 No. 2, pp. 522-545. https://doi.org/10.1108/EC-12-2018-0595
Publisher
:Emerald Publishing Limited
Copyright © 2019, Emerald Publishing Limited