Computations and measurements of the magnetic polarizability tensor characterisation of highly conducting and magnetic objects
ISSN: 0264-4401
Article publication date: 31 August 2023
Issue publication date: 12 October 2023
Abstract
Purpose
The ability to characterise highly conducting objects, that may also be highly magnetic, by the complex symmetric rank–2 magnetic polarizability tensor (MPT) is important for metal detection applications including discriminating between threat and non-threat objects in security screening, identifying unexploded anti-personnel landmines and ordnance and identifying metals of high commercial value in scrap sorting. Many everyday non-threat items have both a large electrical conductivity and a magnetic behaviour, which, for sufficiently weak fields and the frequencies of interest, can be modelled by a high relative magnetic permeability. This paper aims to discuss the aforementioned idea.
Design/methodology/approach
The numerical simulation of the MPT for everyday non-threat highly conducting magnetic objects over a broad range of frequencies is challenging due to the resulting thin skin depths. The authors address this by employing higher order edge finite element discretisations based on unstructured meshes of tetrahedral elements with the addition of thin layers of prismatic elements. Furthermore, computer aided design (CAD) geometrical models of the non-threat and threat object are often not available and, instead, the authors extract the geometrical features of an object from an imaging procedure.
Findings
The authors obtain accurate numerical MPT characterisations that are in close agreement with experimental measurements for realistic physical objects. The assessment of uncertainty shows the impact of geometrical and material parameter uncertainties on the computational results.
Originality/value
The authors present novel computations and measurements of MPT characterisations of realistic objects made of magnetic materials. A novel assessment of uncertainty in the numerical predictions of MPT characterisations for uncertain geometry and material parameters is included.
Keywords
Acknowledgements
James Elgy and Paul D. Ledger are grateful for the financial support received from the Engineering and Physical Science Research Council (EPSRC, UK) through the research grant EP/V009028/1. John L. Davidson and Anthony J. Peyton are grateful for the financial support received from an Innovate UK Grant (reference number 39814). Toykan Özdeğer and Anthony J. Peyton are grateful for the financial support received from EPSRC, UK through the research grant EP/R002177/1.
This work does not have any conflicts of interest.
Citation
Elgy, J., Ledger, P.D., Davidson, J.L., Özdeğer, T. and Peyton, A.J. (2023), "Computations and measurements of the magnetic polarizability tensor characterisation of highly conducting and magnetic objects", Engineering Computations, Vol. 40 No. 7/8, pp. 1778-1806. https://doi.org/10.1108/EC-11-2022-0688
Publisher
:Emerald Publishing Limited
Copyright © 2023, Emerald Publishing Limited