TY - JOUR AB - The localized strain softening behaviour of concrete has been modelled by two approaches: (i) the stiffness degrading model based on the total stress‐strain constitutive relationship, and (ii) the tangent softening model based on the incremental stress‐strain relationship. The models are implemented using a new softening initiation criterion proposed for application in multi‐dimensional finite element analysis. Parametric analyses on plain concrete beams, tested experimentally by other researchers, have been carried out to investigate the required numerical efforts, the mesh objectivity, and the energy dissipation characteristics of the structures. The stiffness degrading model is very stable even when applied with relatively coarse finite element meshes. However, the computational demand of this model is relatively high. The combination of a total stress‐strain constitutive relationship to compute the element responses, and an incremental relationship to formulate the stiffness matrix, appears to be computationally efficient and stable, provided that adequately refined finite element mesh is used to model the structure. VL - 10 IS - 3 SN - 0264-4401 DO - 10.1108/eb023903 UR - https://doi.org/10.1108/eb023903 AU - BHATTACHARJEE SUDIP S. AU - LÉGER PIERRE PY - 1993 Y1 - 1993/01/01 TI - FINITE ELEMENT MODELLING OF THE TENSILE STRAIN SOFTENING BEHAVIOUR OF PLAIN CONCRETE STRUCTURES T2 - Engineering Computations PB - MCB UP Ltd SP - 205 EP - 221 Y2 - 2024/04/20 ER -