To read this content please select one of the options below:

FINITE ELEMENT MODELLING OF THE TENSILE STRAIN SOFTENING BEHAVIOUR OF PLAIN CONCRETE STRUCTURES

SUDIP S. BHATTACHARJEE (Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Québec, H3A 2K6, Canada)
PIERRE LÉGER (Department of Civil Engineering, Ecole Polytechnique, University of Montreal Campus, PO Box 6079, Station A, Montreal, Québec, H3C 3A7, Canada)

Engineering Computations

ISSN: 0264-4401

Article publication date: 1 March 1993

233

Abstract

The localized strain softening behaviour of concrete has been modelled by two approaches: (i) the stiffness degrading model based on the total stress‐strain constitutive relationship, and (ii) the tangent softening model based on the incremental stress‐strain relationship. The models are implemented using a new softening initiation criterion proposed for application in multi‐dimensional finite element analysis. Parametric analyses on plain concrete beams, tested experimentally by other researchers, have been carried out to investigate the required numerical efforts, the mesh objectivity, and the energy dissipation characteristics of the structures. The stiffness degrading model is very stable even when applied with relatively coarse finite element meshes. However, the computational demand of this model is relatively high. The combination of a total stress‐strain constitutive relationship to compute the element responses, and an incremental relationship to formulate the stiffness matrix, appears to be computationally efficient and stable, provided that adequately refined finite element mesh is used to model the structure.

Keywords

Citation

BHATTACHARJEE, S.S. and LÉGER, P. (1993), "FINITE ELEMENT MODELLING OF THE TENSILE STRAIN SOFTENING BEHAVIOUR OF PLAIN CONCRETE STRUCTURES", Engineering Computations, Vol. 10 No. 3, pp. 205-221. https://doi.org/10.1108/eb023903

Publisher

:

MCB UP Ltd

Copyright © 1993, MCB UP Limited

Related articles