To read the full version of this content please select one of the options below:

CERTAIN TOPOLOGICAL POSTULATES IN THE THEORY OF PURSUIT AND EVASION

M.A. KAAZ (VDI/VDE‐Gesellschaft, Mess‐Und Regelungstechnik, P.O. Box 1139, 4‐Düsseldorf 1, Germany)

Kybernetes

ISSN: 0368-492X

Article publication date: 1 April 1974

Abstract

The theory of pursuit games is obviously fragmentary at present. We know that general determinability of such games is incompatible with analysis, based on the principle of time continuity; but we also witness some reasonably successful probing on a smaller scale. The problem is one of existence of winning strategies for quite general sets and spaces. It will be shown here that in one case, where multivalued strategies are used, such strategies must necessarily be subclasses of Polish spaces and in the other, the monovalued case, the loser's set either has to be a first category set in the sense of Baire or an ideal, but in any case a kind of small set. This paper is meant to provide a common topological basis for the appreciation of more recent results.

Citation

KAAZ, M.A. (1974), "CERTAIN TOPOLOGICAL POSTULATES IN THE THEORY OF PURSUIT AND EVASION", Kybernetes, Vol. 3 No. 4, pp. 221-229. https://doi.org/10.1108/eb005372

Publisher

:

MCB UP Ltd

Copyright © 1974, MCB UP Limited