Aerodynamic blade design with multi-objective optimization for a tiltrotor aircraft
Aircraft Engineering and Aerospace Technology
ISSN: 0002-2667
Article publication date: 5 January 2015
Abstract
Purpose
The purpose of this paper is to present the aerodynamic blade design of a tiltwing aircraft with a multi-objective optimization procedure. The aerodynamic design of tiltrotor blades is a very challenging task in the project of this type of aircraft.
Design/methodology/approach
Tiltrotor blades have to give good performance both in helicopter and aeroplane modes. According to the design parameters (the chords, the twists and the airfoils along the blade), as the optimization objectives are different from one operating condition to another, the blade is the result of a multi-objective constrained optimization based on a controlled elitist genetic algorithm founded on the NSGA-II algorithm. The optimization process uses a BEMT solver to compute rotor performance. To avoid negative effects due to compressibility losses in aeroplane mode, the blade shape has been refined following the normal Mach number criterion.
Findings
It has been found that the optimized rotor blade gives good performance both in terms of figure of merit and propulsive efficiency if compared with experimental data of existing rotor (ERICA tiltrotor) and propeller (NACA high-speed propeller).
Practical implications
The optimization procedure described in this paper for the design of tiltrotor blades can be efficiently used for the aerodynamic design of helicopter rotors and aircraft propellers of all typology.
Originality/value
In this work, advanced methodologies have been used for the aerodynamics design of a proprotor optimized for an aircraft which belongs to the innovative typology of high-performance tiltwing tiltrotor aircraft.
Keywords
Citation
Droandi, G. and Gibertini, G. (2015), "Aerodynamic blade design with multi-objective optimization for a tiltrotor aircraft", Aircraft Engineering and Aerospace Technology, Vol. 87 No. 1, pp. 19-29. https://doi.org/10.1108/AEAT-01-2013-0005
Publisher
:Emerald Group Publishing Limited
Copyright © 2015, Emerald Group Publishing Limited