Comparative study of 1,2,3-triazole derivatives as corrosion inhibitors of mild steel in sulphuric acid solution
Anti-Corrosion Methods and Materials
ISSN: 0003-5599
Article publication date: 9 August 2019
Issue publication date: 22 August 2019
Abstract
Purpose
This paper aims to study the corrosion inhibition of Methyl 2-(benzamido)-2-(4-phenyl-1H-1,2,3-triazol-1-yl) acetate (MBPTA) and Methyl 2-(benzamido)-2-(4-p-tolyl-1H-1,2,3-triazol-1-yl) acetate (MBTTA) in 1 M H2SO4 solution at 25 °C.
Design/methodology/approach
The authors have used weight loss measurements, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, FT-IR, quantum chemical calculations and scanning electron microscopy (SEM) techniques.
Findings
The polarization measurements indicate that both compounds are mixed type inhibitors, and that MBTTA is more effective than MBPTA. The effect of temperature on the corrosion behavior using optimal concentration of MBTTA and MBPTA was studied in the temperature range 298-328 K. SEM was used to examine the morphology of the metal surface. Thermodynamic parameters were calculated and discussed. Monte Carlo simulations were applied to lookup for the most stalls configuration and adsorption energy for the interaction of inhibitors on Fe (1 1 1) interface. The difference in inhibition efficiencies between the two organic inhibitors can be clearly explained in terms of frontier molecular orbital theory.
Originality/value
The authors report on the comparative inhibiting effect of two new 1,4-disubstituted 1,2,3-triazoles, namely Methyl 2-(benzamido)-2-(4-phenyl-1H-1,2,3-triazol-1-yl) acetate (MBPTA) and Methyl 2-(benzamido)-2-(4-p-tolyl-1H-1, 2, 3-triazol-1-yl) acetate (MBTTA) on mild steel corrosion in 1 M H2SO4 solution.
Keywords
Citation
Elazhary, I., Laamari, M.R., Boutouil, A., Bahsis, L., El Haddad, M., Anane, H. and Stiriba, S.-E. (2019), "Comparative study of 1,2,3-triazole derivatives as corrosion inhibitors of mild steel in sulphuric acid solution", Anti-Corrosion Methods and Materials, Vol. 66 No. 5, pp. 544-555. https://doi.org/10.1108/ACMM-10-2018-2018
Publisher
:Emerald Publishing Limited
Copyright © 2019, Emerald Publishing Limited