Ishikawa diagrams and Bayesian belief networks for continuous improvement applications

Mark Rodgers (Department of Supply Chain Management, Newark Business School, Rutgers University, Newark, New Jersey, USA)
Rosa Oppenheim (Department of Supply Chain Management, Newark Business School, Rutgers University, Newark, New Jersey, USA)

The TQM Journal

ISSN: 1754-2731

Publication date: 8 May 2019

Abstract

Purpose

In continuous improvement (CI) projects, cause-and-effect diagrams are used to qualitatively express the relationship between a given problem and its root causes. However, when data collection activities are limited, and advanced statistical analyses are not possible, practitioners need to understand causal relationships. The paper aims to discuss these issues.

Design/methodology/approach

In this research, the authors present a framework that combines cause-and-effect diagrams with Bayesian belief networks (BBNs) to estimate causal relationships in instances where formal data collection/analysis activities are too costly or impractical. Specifically, the authors use cause-and-effect diagrams to create causal networks, and leverage elicitation methods to estimate the likelihood of risk scenarios by means of computer-based simulation.

Findings

This framework enables CI practitioners to leverage qualitative data and expertise to conduct in-depth statistical analysis in the event that data collection activities cannot be fully executed. Furthermore, this allows CI practitioners to identify critical root causes of a given problem under investigation before generating solutions.

Originality/value

This is the first framework that translates qualitative insights from a cause-and-effect diagram into a closed-form relationship between inputs and outputs by means of BBN models, simulation and regression.

Keywords

Citation

Rodgers, M. and Oppenheim, R. (2019), "Ishikawa diagrams and Bayesian belief networks for continuous improvement applications", The TQM Journal, Vol. 31 No. 3, pp. 294-318. https://doi.org/10.1108/TQM-11-2018-0184

Download as .RIS

Publisher

:

Emerald Publishing Limited

Copyright © 2019, Emerald Publishing Limited

Please note you might not have access to this content

You may be able to access this content by login via Shibboleth, Open Athens or with your Emerald account.
If you would like to contact us about accessing this content, click the button and fill out the form.
To rent this content from Deepdyve, please click the button.