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Abstract
Purpose – Exploring the influencing factors on urban rail transit (URT) ridership is vital for travel demand
estimation and urban resources planning. Among various existing ridership modeling methods, direct
demand model with ordinary least square (OLS) multiple regression as a representative has considerable
advantages over the traditional four-step model. Nevertheless, OLS multiple regression neglects spatial
instability and spatial heterogeneity from the magnitude of the coefficients across the urban area. This paper
aims to focus onmodeling and analyzing the factors influencingmetro ridership at the station level.
Design/methodology/approach – This paper constructs two novel direct demand models based on
geographically weighted regression (GWR) for modeling influencing factors on metro ridership from a local
perspective. One is GWRwith globally implemented LASSO for feature selection, and the other one is geographically
weighted LASSO (GWL)model, which is GWRwith locally implemented LASSO for feature selection.
Findings – The results of real-world case study of Shenzhen Metro show that the two local models
presented perform better than the traditional global model (OLS) in terms of estimation error of ridership and
goodness-of-fit. Additionally, the GWL model results in a better fit than GWR with global LASSO model,
indicating that the locally implemented LASSO is more effective for the accurate estimation of Shenzhen
metro ridership than global LASSO does. Moreover, the information provided by both two local models
regarding the spatial varied elasticities demonstrates the strong spatial interpretability of models and
potentials in transport planning.
Originality/value – The main contributions are threefold: the approach is based on spatial models
considering spatial autocorrelation of variables, which outperform the traditional global regression model –
OLS – in terms of model fitting and spatial explanatory power. GWR with global feature selection using
LASSO and GWL is compared through a real-world case study on Shenzhen Metro, that is, the difference
between global feature selection and local feature selection is discussed. Network structures as a type of
factors are quantified with themeasurements in the field of complex network.
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1. Introduction
Urban rail transit (URT) plays a critical role in maintaining effective passenger mobility
nowadays. URT ridership at the station level is known to be influenced by interaction
among multiple factors (e.g. land-use, socio-economics, intermodal traffic accessibility and
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metro network structure, etc.). Exploring the influence of these factors is vital to accurately
estimate travel demand and to effectively make design schemes of urban systems including
the identification of which public infrastructures, services and resources need to be built and
deployed. Modeling URT ridership at the station level can help to not only estimate and
forecast ridership but also analyze the influencing factors on it.

Given the need to understand the effects of multiple factors on URT ridership, a
growing number of recent studies have sought to model transit ridership. As one of the
best-known models, the four-step (generation, distribution, mode choice and
assignment) model has been widely used since the 1950s. However, its weaknesses are
also obvious, such as low model accuracy, low data precision, insensitivity to land use,
institutional barriers and high expense (Gutiérrez et al., 2011). As an alternative to the
four-step model, direct demand models have become popular in ridership estimation in
recent decades. Direct demand models estimate ridership as a function of influencing
factors within the pedestrian catchment areas (PCA) via regression analysis, which
enable identifying factors that contribute to higher transit ridership (Gutiérrez et al.,
2011; Choi et al., 2012; Cervero, 2006; Kuby et al., 2004; Chu, 2004). In the models, a PCA
is a geographic area for which a station attracts passengers. The size and shape of a
catchment area depend on how accessible a station is and how far it is from alternative
stations. One can use buffers to create circular catchment areas by a specific distance or
use Thiessen polygons to illustrate the area most accessible to each station. Direct
demand models have distinct advantages in travel analysis, such as simplicity of use,
easy interpretation of results, immediate response, and low cost. As a kind of direct
demand models, ordinary least square (OLS) multiple regression which assumes
parametric stability is generally used (Gutiérrez et al., 2011; Kuby et al., 2004; He et al.,
2018; Sohn and Shim, 2010; Loo et al., 2010; Sung and Oh, 2011; Thompson et al., 2012;
Zhao et al., 2013; Chan and Miranda-Moreno, 2013; Singhal et al., 2014; Liu et al., 2014).
In other words, OLS considers that the coefficients estimated do not have significant
differences in space. With the development of spatial modeling, direct demand models
could increase their spatial explanatory power by using geographically weighted
regression (GWR), which is designed to model spatial parametric non-stationarity and
variance heterogeneity. In recent years, Cardozo et al. (2012) compared the performance
of OLS and GWR in modeling transit ridership and its influencing factors, and GWR
showed better goodness-of-fit than OLS for forecasting station-level ridership.
Furthermore, the study of GWR with penalized forms (e.g. ‘1 norm) can be found in
Wheeler’s (2009) studies. Wheeler (2009) introduced least absolute shrinkage and
selection operator (LASSO) into the GWR framework, called geographically weighted
LASSO (GWL) to simultaneously conduct coefficient regularization and local model
selection, which has the capability to reduce prediction and estimation errors for
estimating the response variable in GWR.

In light of deficiencies of popularly used global direct demand models (OLS multiple
regression), considering the advantage of spatial models including GWR and GWL for
modeling potentially spatially varying relationships, we applied two local direct demand
models based on GWR with global implemented LASSO and GWL into modeling
influencing factors on metro ridership. For the former, we select features by implementing
LASSO globally for all calibration locations before the process of GWR, and for GWL, we
can select features for each station by implementing LASSO locally. The ridership and its
potential influencing factor data of Shenzhen Metro in the year of 2013 are used to elaborate
the two models. Besides, we conduct a relevant comparison analysis of results generated
from those twomodels.
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Ourmain contributions are threefold:
� The approach taken is based on spatial models considering spatial autocorrelation

of variables, which outperform the traditional global regression model OLS in terms
of model fitting and spatial explanatory power.

� GWR with global feature selection using LASSO and GWL are compared through a
real-world case study on Shenzhen metro, that is, the difference between global
feature selection and local feature selection is discussed.

� Network structures as a type of factors are quantified with the measurements in the
field of complex network.

The remainder of this paper is organized as follows. In Section 2, we outline the profiles of
study area and the data description. In Section 3, we provide a description of the
methodology we used. Section 4 conducts results analysis and the comparison between
GWRwith global LASSO and GWLmodels. Finally, Section 5 contains concluding remarks.

2. Area of study and data
Our study focuses on Shenzhen Metro network, which consists of five lines and 118 stations
in the year of 2013 (Figure 1)[1]. Figure 1 shows the spatial distribution of those stations.
Shenzhen Metro ridership data at the station level were aggregated by using the data
collected through AFC system of Shenzhen Metro Corporation in China. The data set
includes the total information about entry–exit smart card records. The data used in the
research cover a time span of seven days from October 14 (Monday) to 20 (Sunday) in 2013.
We summed boarding and alighting ridership amounts and then calculated the average
daily ridership of the whole week. The explanatory variables represent factors hypothesized
to influence station ridership.

2.1 Response variable
This paper aims to identify and analyze multiple factors influencing station ridership. We
conduct preliminary statistical analysis using metro AFC data on October 14. Figure 2(a)
shows the spatial distribution of AFC data records in one day. It presents that the records
are most densely distributed at Grand Theatre station and Laojie station, closely followed
by Huaqiang Road station and Luohu station, and the records of other stations have
relatively sparse distribution.

Figure 1.
ShenzhenMetro
map of 2013
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Figure 2(b) is about temporal distribution of AFC data records, which shows that the
spatial distribution of records has a peak value at both 8:00 and 18:00 on both
weekdays and weekends. Additionally, the characteristics of temporal distribution of
records on weekdays and weekends is quite similar, which suggests that there are
similar metro travel patterns, with morning and evening peaks on weekdays and
weekends in Shenzhen.

Therefore, the models with average daily ridership of the whole week (the operation
times of Shenzhen metro is 6:30-23:00) as the response variable will be built intending to find
the factors influencing the station-level ridership.

2.2 Explanatory variables
The explanatory variables represent factors hypothesized to influence station ridership
(Table I). The variables can be classified into four categories:

(1) land use;
(2) social economics;
(3) intermodal traffic access variables; and
(4) network structure.

As the average friendly walking distance is generally assumed to be 500 m in large-
and middle-sized cities according to Dovey et al. (2017), we also define the distance of
PCA of each Shenzhen Metro station as 500 m. In our work, we use a buffer to create
circular PCA by 500m. Based on the buffer with a radius of 500 m determined,
population, all of the land use-related data and the number of bus stations were
collected subsequently.

2.2.1 Land use variables. All of the land use–related data within a PCA were collected
from Baidu Map with the assistance of API, and land use variables consist of the residences,
entertainment, services, business, education and offices closer to the station. Specifically, the
information covers the numbers of residence, restaurants, schools, working buildings,
hospitals, banks, shopping places and hotels within 500-m PCA.

2.2.2 Social – economics variables. Social–economic variables consist of the population
distribution of Shenzhen in 2013 and operation days since the metro stations opened. The
information of days since the metro lines and stations opened was collected from a website

Figure 2.
Spatial and temporal
distribution of AFC

data records
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named “UrbanRail”[2]. The higher residential population is hypothesized to be positively
associated with ridership. Here, we obtained information about population distribution in
the whole city of Shenzhen in 2013 from the website of Worldpop[3]. During data pre-
processing, the population within each buffer can be obtained by summing up the value of
the grid falls into the metro station buffer by using ArcGIS 10.2. Figure 3 shows the
population distribution of the whole city of Shenzhen in 2013 and 500-m buffers of metro
stations.

Through the preliminary visualization in Figure 3, it is noted that population is densely
distributed near the metro region. The influence of population density within each station
buffer on ridership is pending for analysis in themodel.

2.2.3 Intermodal traffic access variables. As for intermodal traffic access, here we
considered the feeder bus system. The number of bus stations near a metro station was
hypothesized to be positively related to station ridership, which was also collected from the
BaiduMap.

2.2.4 Network structure variables. In this paper, network structure variables comprise
the degree centrality and betweenness centrality of the metro network nodes and the
distance to the city center. In the field of complex networks, as the degree is a simple

Table I.
Summary of
explanatory
variables

Categories Explanatory variables Acronym of variables Source

Land Use No. of residential units Residence Baidu map
No. of restaurants Restaurant Baidu map
No. retailers/shopping Shopping Baidu map
No. of schools School Baidu map
No. of offices Offices Baidu map
No. of banks Bank Baidu map
No. of hospitals Hospital Baidu map
No. of hotels Hotel Baidu map

Network Structure Distance to the city center Dis_to_cent Calculated
Degree centrality Degree Calculated
Betweenness centrality Between Calculated

Social Economics Population Pop Worldpop
Days since opened Days_open Baidu baike

Intermodal Traffic Access No. of bus stations Bus Baidu map

Figure 3.
Population
distribution and
500-m buffers of
metro stations
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centrality measure that counts how many neighbors a node has, and the betweenness
centrality for each node refers to the number of shortest paths that pass through the node
(Erciyes, 2014); thus, they are correlated to the information for transfer stations or terminal
stations, and the importance of stations in the aspect of their controlling overflows passing
between others of metro networks. As for the distance Disti of each station to the city center,
which is ShenzhenMunicipal People’s Government, located in Futian District, we calculate it
by the following equation (1) considering the effect of the radius of the earth:

Disti ¼ R � arccos cos Lat0ð Þ � cos Latið Þ � cos Lon0 � Lonið Þ
þsin Latið Þ � sin Lat0ð Þ

 !
� p

180
(1)

Where, R is the radius of the earth, and (Lat0, Lon0) and (Lati, Loni) are the latitude and
longitude of the city center and station i, respectively. The related geographical data were
collected from Google Maps.

3. Methodology
3.1 GWR with global LASSO
The first method is to implement LASSO for all stations’ variables first to perform variable
selection, and after that feed the selected explanatory variables into the GWR model to
understand the spatially varied effects of those selected factors on metro station ridership.

3.1.1 Geographically weighted regression. In this study, we use geographically weighted
regression (GWR) models to estimate station-level ridership. GWR model is an extension of
ordinary least squares (OLS) or linear least squares, which is shown as follows:

yi ¼ b þ
Xp
k¼1

b kxik þ « i (2)

Geographical location factors are introduced into regression parameters to allow local
parameter estimation, and the extended GWRmodel is as follows:

yi ¼ b 0 ui; við Þ þ
Xp
k¼1

b k ui; við Þxik þ « i (3)

Where yi and xi1, xi2,. . .,xip are observed values of the response variable y and explanatory
variables x1, x2,. . .,xp at the location of (ui, vi), which is geospatial coordinates of the
observation point i = (1,2,. . .,n), and « i is the normally distributed error term (with the
expected value 0 and constant variance). b k(ui, vi)(k = 1,2,. . .,p) refers to p unknown
functions associated with the spatial position. The geographic location of each observation
point (ui, vi) is weighted by GWR model, and the weight generally is a kind of the distance
decay function (Fotheringham and O’Kelly, 1989). In the model, the determination of
bandwidth will directly affect the weight function and also the precision of the model, thus
the determination of bandwidth is crucial.

3.1.2 Least absolute shrinkage and selection operator. The structured data has 14
explanatory variables (shown in Table I) with a limited amount of observations, which may
cause multicollinearity and overfitting. Redundant variables should be removed to make the
process of modeling more efficient. Therefore, before fitting the regression model, it is
necessary to select features from the original variables candidates. As a kind of shrinkage
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methods, LASSO tends to not only reduce the variability of the estimates, thus improving
the model’s stability, but also set some of the coefficients to zero, enabling variable selection.
LASSOmakes use of the ‘1 norm. ‘1 penalties are convex and the assumed sparsity can lead
to significant computational advantages. LASSO is defined as follows:

b̂
R ¼ argmin

b

Xn
i¼1

yi � b 0 �
Xp
k¼1

xikb k

 !2

(4)

Subject to:

Xp
k¼1

����b k

����# s (5)

where s is a parameter that controls the degree of coefficient shrinkage. Tibshirani (1996)
proved that LASSO constraint

X
k

jb kj# s is equivalent to adding the penalty term

l
X
k

jb kj to the residual sum of squares (RSS). Thus a direct relationship between s and

l � 0 which is a complexity parameter that controls the degree of shrinkage of coefficients.
Hence, coefficients of LASSO can also be expressed as:

b̂
R ¼ argmin

b

Xn
i¼1

yi � b 0 �
Xp
k¼1

xikb k

 !2

þ l
Xp
k¼1

����b k

����
8<
:

9=
; (6)

The generally used methods for solving LASSO are standard convex optimizer (Gauraha,
2018) and least angle regression (LARS) (Efron et al., 2004). In this study, we adopted LARS
to solve LASSO.

3.2 Geographically weighted LASSO model
The second method is based on the GWL framework developed by Wheeler (2009). This
method performs the local model selection by implementing LASSO for each station, so that
one can understand what factors influence which stations and how strong the influencing
effects are.

The algorithm to estimate the GWL solutions is shown as following:
Step 1: estimate the local scaling GWL parameters (shrinkage parameter si at each

location i and bandwidth b) by minimizing leave-one-out-cross-validation (LOOCV) root
mean square error (RMSE). Here we choose the bandwidth b in the binary search for the
minimum RMSPE.

� Calculate the n � n inter-point distance matrix D with the coordinates (ui, vi) of
station i.

� Calculate the n � n weights matrix W using the distance matrix D and the initial b

according to wj ið Þ ¼ exp � dij
b

� �2� �
. The diagonal elements in the weights matrix

are defined asW(i) = diag[w1(i),. . .,wn(i)] .
� For each station i, i = 1,. . .,n:

SRT
1,1

8



� Set the square root of W(i) asW1/2(i) and W1/2(i)ii = 0, i.e., set the (i,i) element of the
square root of the diagonal weights matrix to 0 to delete the observation point i.

� Calculate Xw =W1/2(i)X and yw =W1/2(i)y withW1/2(i)at station i.
� Call lars (Xw,yw), seek the lasso solution that minimizes the error for yi, and save it.
� Stop when there is a slight change in the estimated b. Save the estimated b,

parameter si, the matrix of regression coefficients b̂ ið Þ ¼ b̂ i0; b̂ i1; . . . ; b̂ ip

� �T
and

indicator vector z of which variable coefficients are shrunken to zero.

Step 2: estimate the final local scaling GWL solutions using the shrinkage parameter si and
kernel bandwidth parameter b estimated in Step 1.

(1) Calculate the weights matrixW using the distance matrixD and the b estimated in
Step 1.

(2) For each location i, i = 1,. . .,n:
� Set the square root of W(i) asW1/2(i).
� Calculate Xw =W1/2(i)X and yw =W1/2(i)y usingW1/2(i) at station i.
� Call lars (Xw, yw) and save the series of lasso solutions.
� Choose the lasso solution that matches the LOOCV solution on the basis of the

shrinkage parameter si and the indicator vector z.

4. Results and discussion
4.1 Spatial autocorrelation test to variables
Before building GWR and GWL models, the analysis is performed to determine if the
candidate variables are spatially autocorrelated. The test of spatial autocorrelation can
detect how strong spatial correlation of variables is, which will provide a theoretical basis
for the feasibility of applying a GWR model. Moran’s I is a measure of spatial
autocorrelation developed by Moran (1950). Moran scatter plot can reflect the spatial
autocorrelation intuitively. The scatter plot has four quadrants. If the observed value falls to
the first and third quadrants, it indicates that there is a strong positive spatial correlation. If
it falls to the second and fourth quadrants, it indicates there is a strong negative spatial
correlation. Figure 4 shows several variables’Moran scatter plot.

According to Moran scatter plots (see Figure 4), it can be seen that Moran’s I values of all
variables above aren’t equal to 0, which indicates these variables are not randomly
distributed in space, and mostly falls to the first and the third quadrants. It shows that each
variable is positively spatially correlated more or less, especially three explanatory
variables, namely, population, distance to the city center and days since opening, have
strong spatial correlations as the values of Moran’s I are all greater than 0.3 (Cressie, 1992).
The result also lays the foundation for the feasibility of the follow-up study.

4.2 Results of Model 1 (GWR with global LASSO)
Since strong spatial correlation has been found for the variables in the research, it is
reasonable to build GWR models to analyze influencing factors on station ridership of
Shenzhen Metro. Through variables’ selection based on LASSO, the explanatory variables
selected from the candidate variables listed in Table I are pop, Between, Days_open,
Shopping, Dis_to_cent. It indicates that population, betweenness centrality, days since
stations opened, numbers of shopping places within PCA and distance of stations to the city
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center are important features for influencing metro station ridership for most of metro
stations in Shenzhen.

Next up, GWR for modeling average daily ridership of the whole week and its influencing
factors is built. The results of GWR model compared with those of OLS model that also
includes the same variables selected by implementing LASSO are presented in Table II.

First, according to Table II, AICc value of GWR model is less than that of their
corresponding global regression (OLS) model. According to the evaluation criterion of
Brunsdon et al. (1996), if the AICc value of GWR model is at least 3 less than that of OLS
model, we can consider that GWR model fits better than OLS model even considering the
complexity of GWRmodel. What is more, the adjusted R2 value of GWRmodel is obviously
greater than that of the corresponding OLSmodel, which shows that GWRmodel has strong
explanatory power even under consideration for model complexity. Likewise, the parameter
value (Sigma) indicating the model error of GWR model is also lower, and the residual sum
of square from the GWR model is smaller than that from the OLS model. Generally
speaking, the results show that the goodness-of-fit indicators of GWR model perform better
than those of OLS model. Additionally, ANOVA tests shown in Table II are carried out to
find out if the global (OLS) regression model and the GWR model have the same statistical
performance (the same size of error variance). The results of ANOVA test suggest that there
is a significant improvement when GWR is adopted.

GWR model for average daily ridership of a whole week regression performs pretty well
in terms of the value of R2, which means that we only need to know the information of
population distribution, betweenness centrality, days since stations opened, number of
shopping places within PCA and distance of stations to the city center; we can use GWR
model to explain 81 per cent of the response variable and average daily ridership, and
meanwhile, the data related to these explanatory variables are quite easy to collect.

According to Voronoi algorithm (Fu et al., 2006), the ShenzhenMetro coverage area can be
divided into several Thiessen polygons according to the locations of stations. In this context,
the spatial distribution of local coefficients is visualized by Thiessen polygons. Through

Figure 4.
Moran scatterplot of
variables
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understanding the spatial distribution of local coefficients (elasticities) and t-values
(significance), it is possible to know how relations between the variables vary across space
(estimated coefficients) and with what statistical significance. Take pop as an example. The
mean of the coefficients from the population variable is 3284.89 [see Figure 5(a)]. It means
that for each person within the station catchment area, the number of trips increases by

Table II.
Results of GWR with
global LASSO model
and OLS model with

LASSO

Global (OLS) Local (GWR)
Varaiables Estimate Standard error t(Est/SE) Minimum Maximum Mean STD

Intercept 148902.14 8373.14 17.78 �220846.06 1259330.97 230997.13 231395.86
Pop 29682.08 9949.31 2.98 �87929.62 174341.19 24227.35 57929.46
Betweenness 25971.88 9096.29 2.86 �75396.67 122215.16 30440.91 53705.86
Days_open 36322.47 8796.81 4.13 �449460.34 868771.29 72348.20 158603.43
Shopping 15242.75 9217.93 1.65 �68601.68 58895.47 1474.80 29877.34
Dis_to_cent �10074.73 9248.92 �1.09 �207415.70 755777.31 43828.83 157781.05

Diagnostic
R2 0.35 0.81
Adjusted R2 0.32 0.65
Sigma 90925.69 64811.17
AICc 3038.33 3035.27
Residual sum of squares 925957952739.49 269172991697.74
Number of parameters 6 37.83

GWR ANOVA Table
Source SS DF MS F p-Value
Global residuals 925957952739.493 6.000
GWR improvement 656784961041.749 47.919 13706255804.666
GWR residuals 269172991697.743 64.081 4200487280.123 3.263016 0.00000618

Figure 5.
Spatial distribution of
local coefficients for
pop (elasticities) and

t-values (significance)
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3284.89 per day. However, these elasticities distribute unevenly in space. More trips per
capita were expected in the center and mid-north, where commerce, administration and
education are concentrated, while elasticity values were lower in the west and east. Moreover,
the t-values map on the right shows that the effect of population is more significant in the
middle area at a 0.05 level (the absolute value of t-values larger than 1.96) [Figure 5(b)].
In general, GWR has strong spatial explanatory power based on the local analysis of the
variation of each coefficient across space (elasticities).

4.3 Results of Model 2 (GWL) and comparative analysis of two models
GWL model (GWR with locally implemented LASSO enabling simultaneous coefficient
penalization and model selection) is conducted on the Shenzhen Metro data set. The
comparison of results of GWLmodel and OLSmodel, OLS with LASSO for feature selection,
GWR and GWR with global LASSO for feature selection for estimating average daily
ridership of the whole week are shown in Figure 6.

The accuracy of the estimated responses is measured by calculating RMSE. The RMSE
is the square root of the mean of the squared deviations of the estimates from the true values
and should be small for accurate estimators. R2 is a statistical measure that represents the
proportion of the variance for a response variable that’s explained by explanatory variables.

In general, the performance rank of five methods is “GWL>GWR with global
LASSO>GWR>OLS>OLSwith LASSO”.

First, we can see the superiority of three local models for feature selection (GWL, GWR
with global LASSO, GWR) over the global models (OLS, OLS with LASSO) in terms of the
estimation error of response variable and goodness-of-fit. Second, it should be noted that the
local models such as GWR with global LASSO and GWL perform better than the original
version of GWR model, which proves the importance of feature selection. Third, GWL
performs better than GWR with global LASSO, which indicates that the locally
implemented LASSO for each station during the procedure of GWR performs better than the
globally implemented LASSO for feature selection before GWR. Fourth, GWL for metro
network performs substantially better than the other four models at estimating the response
variable. Therefore, we can conclude that GWL model which incorporates locally
implemented LASSO for the metro network is able to estimate Shenzhen Metro ridership
more accurately.

To investigate which station a certain variable has the most impact on, the local
regression coefficients’ distribution for each variable of all stations in GWLmodel is plotted
in bubble plots. The spatial distribution of local coefficients is shown in Figure 7.

Figure 6.
Comparison of
regression
performance of
models for ridership
estimation
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Through understanding the spatial distribution of local coefficients (elasticities), the
relations between the variables varying across space (estimated coefficients) and variables
selection of all stations can be revealed. In Figure 7, the bubble with the bold outline
demonstrates the coefficient for the variable in the station equals to 0, and other bubbles’
colors identify the range of coefficients; the bubble with lighter colors means the coefficient
is larger, and vice versa. Take the population factor as an example; stations with large
positive coefficients are mainly distributed in the center, indicating that more trips per
capita were expected in the central south area of the metro network, where commerce,
administration and education are concentrated. Besides, we can note that for the factors of
degree and hospital, there are numerous stations with zero coefficient, so these factors are
not so important factors for influencing most of ShenzhenMetro stations’ ridership.

Through comparing the interpretation of the coefficients of GWR with global LASSO
and GWL models, we can find that the coefficients of both models are spatially varied,
helping us gain local insights into analyzing the influencing factors of Shenzhen Metro
ridership. In addition, for Model 1, the explanatory variables are selected for all stations

Figure 7.
Spatial distribution of

local coefficients
(elasticities) of GWL

model
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uniformly before conducting GWR, whereas for Model 2, the variables of each station are
selected respectively during the procedure of GWR, and therefore, the difference between the
coefficients of twomodels are: first, the coefficients of Model 2 include all potential candidate
variables initially but Model 1 selects several important factors at the beginning. Second, for
some stations, the coefficients for the certain variables of Model 2 may be shrunk to zero, but
the coefficients for variables of Model 1 cannot be zero, which means that for Model 2,
different stations may have different influencing factors and the degree of impact also can
be varied, and for Model 1, we can only discuss the spatially varied impacts of those
common important factors on the metro ridership of stations in different locations.
Moreover, in Model 2, factors with coefficients of numerous stations being zero are in
accordance with the factors which are not selected in Model 1, such as hospital and degree.
In other words, GWL model paid more attention to the spatial difference of influence of
factors on metro ridership at each station than GWR model with LASSO does. Generally,
both models can provide us local perspectives more or less while interpreting coefficients.

5. Conclusion
In summary, this paper builds two spatial models to analyze the influencing factors of
Shenzhen Metro ridership at the station level from a local perspective. One model is GWR
model with global LASSO for variables selection, and the other one is GWL model, which
implements LASSO for each calibration location during the procedure of GWR, i.e. GWR
with local LASSO. We demonstrate the applicability of these two models through the spatial
autocorrelation test and superiority of them over global models through a real-world case
study of Shenzhen Metro systems, and meanwhile, we not only analyze the influencing
factors of Shenzhen metro station-level ridership from a local perspective but also conduct a
comparative analysis on these two models. Additionally, different from previous work, we
borrow the conceptions, including degree centrality and betweenness centrality, from
complex network theory to better quantify the network structure factors related to the
practical significance of metro networks, which cover comprehensive information compared
with dummy variables.

The results of the case study show that the local models including GWL model, GWR
without feature selection and GWR model with global LASSO perform better than global
models including OLS and OLS with LASSO in terms of estimation error and goodness-of-
fit. Besides, the estimation error of GWL is lower than that of GWR with global LASSO,
which indicates the locally implemented LASSO for each station during the procedure of
GWR performs better than globally implemented LASSO for feature selection before GWR.
With regards to the interpretation of coefficients of two models, the coefficients of GWL
model include all potential candidate variables initially but GWR with global LASSO model
select several important factors at the beginning. Additionally, for GWL model, different
stations may have different influencing factors and the degree of impact also can be varied,
and for GWR with global LASSO, we can only discuss the spatially varied impacts of those
common important factors on the metro ridership of stations in different locations. To sum
up, GWLmodel pays more attention to the spatial difference of influence of factors on metro
ridership at each station than GWRmodel with global LASSO does.

In general, the two local models presented in this paper not only improve the
performance of traditional OLS multiple regression on modeling metro ridership and its
influencing factors in terms of goodness-of-fit and estimation error but also inspired metro
planning, passenger flows management and periphery development from a local
perspective.
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Notes

1. Source: http://toursmaps.com/wp-content/uploads/2017/02/shenzhen_metro_map-1.gif

2. Source: www.urbanrail.net/as/cn/shen/shenzhen.htm

3. Source: www.worldpop.org.uk/data/get_data/
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