To read this content please select one of the options below:

Implementation of high-performance MEMS platinum micro-hotplate

Fatemeh Samaeifar (Electrical Engineering Department, Malek Ashtar University of Technology, Tehran, Iran)
Hassan Hajghassem (Department of New Sciences & Technologies, University of Tehran, Tehran, Iran)
Ahmad Afifi (Department of Electrical Engineering, Malek Ashtar University of Technology, Tehran, Iran)
Hassan Abdollahi (Department of Electrical Engineering, Shahid Sattari Aeronautical University of Science and Technology, Tehran, Iran)

Sensor Review

ISSN: 0260-2288

Article publication date: 19 January 2015




One of the key components of the micro-sensors is MEMS micro-hotplate. The purpose of this paper is to introduce a platinum micro-hotplate with the proper geometry using the analytical model based on the heat transfer analysis to improve both heating efficiency and time constant.


This analytical model exhibits that suitable design for the micro-hotplate can be obtained by the appropriate selection of square heater (LH) and tether width (WTe). Based on this model and requirements of routine sample loading, the size of LH and WTe are chosen 200 and 15 μm, respectively. In addition, a simple micro-fabrication process is adopted to form the suspended micro-heater using bulk micromachining technology.


The experimental results show that the heating efficiency and heating and cooling time constants are 21.27 K/mW and 2.5 ms and 2.1 ms, respectively, for the temperature variation from 300 to 400 K in the fabricated micro-hotplates which are in closed agreement with the results obtained from the analytical model with errors within 5 per cent.


Our design based on the analytical model achieves a combination of fast time constant and high heating efficiency that are comparable or superior to the previously published platinum micro-hotplate.



Samaeifar, F., Hajghassem, H., Afifi, A. and Abdollahi, H. (2015), "Implementation of high-performance MEMS platinum micro-hotplate", Sensor Review, Vol. 35 No. 1, pp. 116-124.



Emerald Group Publishing Limited

Copyright © 2015, Emerald Group Publishing Limited

Related articles