Structural modeling of heterogeneous data with partial least squares
ISBN: 978-0-85724-475-8, eISBN: 978-0-85724-476-5
Publication date: 24 November 2010
Abstract
Alongside structural equation modeling (SEM), the complementary technique of partial least squares (PLS) path modeling helps researchers understand relations among sets of observed variables. Like SEM, PLS began with an assumption of homogeneity – one population and one model – but has developed techniques for modeling data from heterogeneous populations, consistent with a marketing emphasis on segmentation. Heterogeneity can be expressed through interactions and nonlinear terms. Additionally, researchers can use multiple group analysis and latent class methods. This chapter reviews these techniques for modeling heterogeneous data in PLS, and illustrates key developments in finite mixture modeling in PLS using the SmartPLS 2.0 package.
Citation
Rigdon, E.E., Ringle, C.M. and Sarstedt, M. (2010), "Structural modeling of heterogeneous data with partial least squares", Malhotra, N.K. (Ed.) Review of Marketing Research (Review of Marketing Research, Vol. 7), Emerald Group Publishing Limited, Leeds, pp. 255-296. https://doi.org/10.1108/S1548-6435(2010)0000007011
Publisher
:Emerald Group Publishing Limited
Copyright © 2010, Emerald Group Publishing Limited