INDEX

A Nation at Risk, 118
Academic experience, 67
Academic gap, 19–20
Active recruitment, 14–16
Administrative leadership, 215–216
Advanced Placement classes (AP classes), 148
Age of STEM, 110
Agency, 162–163
as student and human being, 170–171
Alternative Certification Pathway for STEM (ACP for STEM), 219–220
American Educational Research Association (AERA), 38, 89–90
American STEM workforce, 180
Analysis of variance (ANOVA), 89
Analysis tools, 143–144
Attributes, 19
Bachelor of arts (BA), 14–16
Bachelor of science (BS), 14–16
Biological Sciences Curriculum Study, 43
Biology (BIO), 16–17
Broadening, 118, 143, 164, 187
Brookhaven National Laboratory, 73
Building relationships, 78
Burrowing, 143–144, 164, 187
California Polytechnic State University (Cal Poly), 72
Capacitor Aided System for Teaching and Learning Electricity curriculum (CASTLE curriculum), 58–59
Career developments, 228–229
Center for Academic Support and Assessment (CASA), 12–14
Central data-yielding approach, 92
Certified physics teacher production, 36–37
Chemistry (CHEM), 16–17
Chiyoda Young Innovators’ Academy, 33, 74
Civic responsibility, 184
Classroom
improving classroom management, 101–102
teacher leader, 216–217
Classroom Interactions (CI), 16–19
Coleman Report, 113, 137
College and Career Readiness Standards (CCRS), 34–35
College of Education (COE), 12, 14, 16, 27–28
College of Natural Science and Mathematics (NSM), 12, 14, 27–28, 50, 202
Computer science education, 110–111
Conference/meeting attendance, 71–72
Confidence, 98
changed attitude and behavior toward teaching in STEM, 102–104
improved classroom management, 101–102
increased preservice teachers, 98–104
strengthened teacher motivation and commitment, 99–101
Contemporary American Research, 113
Counterstories, 152–153
“Cross-eye scripting”, 168
Cultural competence, 78
Culturally responsive pedagogy (CRP), 19–21, 75–76, 78, 219
characteristics of, 21
incorporation of CRP into teachHOUSTON field-based courses, 22
Curriculum. See also School curriculum, 28, 44, 48–49
learner, 141–142
making, 111, 141–142
milieu, 142
“small stories” of curriculum making, 144–145
subject matter, 142
teacher, 141
Curriculum and Instruction (CUIN), 218–219
Darling Hammond’s metaanalysis of policy documents, 19–20
Demonstration lessons, 18
Department of Physics, 29
Dialectics, 164
Discipline specific teacher education courses, 70–71
Earth Science Curriculum Project, 43
Economic efficiency, 184
Education in Multicultural Society (EMS), 221
Education(al), 41–42
purpose of education, 184
system, 47–48
EducationNEXT, 137–138
Effective instructional strategies, 18–19
English as a Second Language/ English Language Learners (ESL/ELL), 217
English as Second Language (ESL), 148
Ethnographic approach, 91
Experience, 139–140, 161–162, 185
Experiential learning, 67
Exxon Mobil Bernard Harris Summer Science Camp, 33, 74
Faculty members, 14–16
Familial curriculum making, 126
Females in STEM disciplines, 167–168
Fictionalization, 143–144
Field-based courses, 17
Field-based experiences, 67
Financial incentives
scholarships, 182
for STEM students, 181
First time in college students (FTIC students), 207–208
Fluid inquiry, 127–128
Formal activities, learning through, 66–67
Formal learning experiences. See also Informal learning experiences (ILEs), 86
preservice teacher preparation enhancement through, 66
Grade point averages (GPA), 19–20
Graduate students, 119–120, 145
Grant opportunities, 218–223
Higher education, 159–160
Human being, agency as, 170–171
Human preparation, 194–195
Human relationship, 184
Identity, 116–117, 140–141, 162, 186
Improbability of certainty, 128
In loco parentis, 152
In-service science teacher preparation programs, 12, 41–43
Informal activities, learning through, 66–67
Informal learning experiences (ILEs), 14, 16, 86–89
mathematics education, 90–91
in preservice teacher preparation, 89–90
preservice teacher preparation enhancement through, 66
science education, 90
in STEM, 89
Innovation
grant opportunities, 218–223
leading through, 218–223
Inquiry. See also Narrative inquiry, 12
inquiry-based instruction, 42
inquiry-based learning, 30, 37, 43, 45, 47, 86, 220–221
Inquiry-based teaching
and learning, 16–17
pedagogies, 38–39
Instructional
approaches, 18
coach, 215–216
Instrumentalism, 183–184
Integrated research-based professional
development, 14
Intellectual lineage of teaching, 10–11
Interactive-based teaching tools, 30–31
Interest and Recruitment in Science (IRIS), 113–114
Internships, 67, 73
pathway to teaching profession, 79
Interpretive themes, 170–173
agency as student and agency as
human being, 170–171
students’ multilayered identities
development, 171–172
Interpretive tools, 54, 92, 187
Invitations to inquiry, 127
Jencks Report, 113
K-12 teaching experience, 18
Laboratory-based modules, 35
Learner, 141–142
learner-centeredness, 160
relationships between learners and
“teachers”, 126
Learner Centered Proficiencies, 19
Learning, 10. See also
Informal learning experiences (ILEs)
through formal and informal activities, 66–67
professors inquiry stance toward,
169–170
science, 53
in small moments, 153
Lee Mitchell (LM), 145, 149, 151
5E lesson plan, 73
Liberal Arts in STEM education, 153–154
Long-term impact of teachers,
136–137
Master Teacher Fellows (MTFs),
218–219
Master teachers, 14, 16, 18–19
Mathematics education, 90–91
Medical College Admission Test
(MCAT), 189
Meganarratives, 144–145
Memorization, 44–45
Mentor teachers, 14, 16, 18–19
Milieu, 142
Mindedness, 10–11
Minority teachers, 8
Model lessons, 19
Modus operandi, 139
Multiple Teaching Strategies (MTS),
16–17, 19
Narrative
exemplars, 165
research in STEM education,
114–115, 138–139
in STEM curriculum, 114–115
three-dimensional narrative inquiry space, 163
NASA Armstrong Flight Research Center, 73
NASA Jet Propulsion Lab, 73
National Academy of Sciences, 27–28, 86
National Association of Research in Science Teaching (NARST), 89–90
National Math and Science Initiative (NMSI), 218–219
National Research Council (NRC), 12, 41–42, 45
National Science Education Standards, 12, 45
National Science Teachers Association (NSTA), 89–90
Noyce conference, 35–36
Noyce Internship Institute, 75, 78, 93
Noyce Intern week one training overview, 77
Noyce Intern week two training overview, 78
Noyce Scholarship program, 14, 16, 51, 182–183
and summer internship, 33
“Opportunity gap”, 8
Parents influence on student success, 112–114
Coleman Report, 113
Contemporary American Research, 113
International Research, 113–114
Jencks Report, 113
US Research, 112–113
Parents’ influence on undergraduate and graduate students, 110–111
changed narratives=changed lives, 128
conceptual framework, 115–117
description of undergraduate and graduate students, 119–120
experience, 115
familial curriculum making, 126
identity, 116–117
improbability of certainty, 128
influence of parents on student success, 112–114
invitations to inquiry, 127
Katrina Roderick, 119–121
literature review, 111–115
modes of inquiry, 127–128
narrative in STEM curriculum and narrative research in STEM education, 114–115
narrative inquiry, 117
narratives of experience, 120–126
relationships between learners and “teachers”, 126
research method, 117–120
Ryan Archer, 119, 121, 123
Sam Bernard, 119–120, 124, 126
sources of evidence, 117–118
STEM in school curriculum, 111–112
story, 115–116, 126, 128
tools of analysis, 118
trustworthiness of findings, 118–119
Pedagogy, 14–16
Peer coaching, 18
Physical Science Study Committee, 43
Physics (PHYS), 16–17
awards, 38
certified physics teacher production, 36–37
education courses, 227–228
by Inquiry course, 34–35
Noyce Internship Institute, 93
overarching themes, 97–98
question, 86–87
Raul’s account, 95–96
research method, 91–92
research question, 87
SCT, 87–88
situating inquiry, 92–93
sources of evidence, 92
Summer STEM Camp, 93
teachHOUSTON program, 92–93
themes of study and illuminating
exemplars, 98
theoretical foundation, 87–88
President’s Council of Advisors on
Science and Technology
(PCAST), 180
Professional development, 68–69, 75,
78
for practicing teachers, 20–21
Professional Development Internship
Institute, 33–34
Professors influence on students
enrolling, 161
agency, 162–163
experience and story, 161–162
identity, 162
interpretive themes, 170–173
narrative exemplars, 165
narrative inquiry, 163–164
professor acts as navigator for
students, 168–169
professor cares, 165–166
professor represents females in
STEM disciplines, 167–168
professors build STEM commu-
nity, 166–167
professors inquiry stance toward
teaching and learning, 169–170
professors’ engagement of them-
selves in interactions with
students, 172–173
research participants, 164–165
STEM student attrition and
retention, 160–161
theoretical underpinnings, 161–163
validation, 164
Professors’ engagement in interactions
with students, 172–173
Project-based learning, 75–76, 86
“Proof-of-concept”, 168
Qualified physics teachers, 33–34
content training of, 34–35
Qualified STEM teachers, 8–10
Qualitative research methods in
STEM education, 117
‘Re-culture’, 43
Recruitment, 30–31
Reflective thinking, 10–11
Reforms in teaching science/physics,
45–47
Research Experiences for Teachers
(RET), 72
Research participants, 164–165,
187–188
Research-based instructional lesson
plan model, 18
Restorying, 143–144, 164, 187
Retention, 30–31
“Rhetoric of conclusions”, 11
Rote learning, 44–45
S-STEM grant programs, 164,
Scholarship for Service (SFS),
181–182
School curriculum
familial commonplaces of curricu-
rum, 112
Schwab’s commonplaces of curricu-
ulum, 112
STEM in, 111–112
Schwab’s notions of inquiry, 47
Science
education, 90
Index

as inquiry, 10–12, 117
teacher professional development, 68–69
Science, technology, engineering, and mathematics (STEM), 7–8, 12, 14, 27–28, 30, 33–34, 51, 86, 100, 110, 136, 159–160, 180, 202, 227–228
Anton Ivanov, 189
careers, 144
changed attitude and behavior toward teaching in, 102–104
conceptual framework, 184–186
cradle-to-career trajectory, 110
data sources, 187
disciplines, 20–21
Duong Pham, 190
education, 144–145
effects of scholarships, 182–183
enabling students to discover new selves, 194
experience, 185
fields, 41–42
filling void in students’ academic, personal, and/or professional lives, 193–194
human preparation, 194–195
identity, 186
ILEs in, 87–88
instrumentalism, 183–184
interpretive tools, 187
Joyce Harding, 189–190
Kadeem Bello, 191
Liberal Arts in STEM education, 153–154
literature review, 182–184
narrative in STEM curriculum, 114
narrative inquiry, 186–187
narrative research in, 114–115, 138–139
NSF scholarships in study, 181–182
Omid Kassen, STEM life blueprint, 188–189
pipeline, 110
professor represents females in STEM disciplines, 167–168
purpose of education, 184
qualified STEM teachers, 8–10
qualitative research methods in, 117
research participants, 187–188
scholarship grants value, 181
scholarship programs, 183
in school curriculum, 111–112
small stories of scholarship grant experiences, 188–193
story, 186
student attrition and retention, 160–161
summer camp, 74–75
Sunjay Ritzvi, 191–192
teacher education program, 1–3, 78
teacher preparation, 9–10, 14
teacher workforce diversity, 213
teachers, 66
teachHOUSTON, 9–10
Tonya Goodson, 192–193
value, 185
“Science by Inquiry” course, 211–212
Science Teacher and Researcher program (STAR program), 72–73
Science Teacher Equity Project (STEP), 37
Scientific inquiry, 12, 45, 47
Secondary STEM teacher, 50
certification, 27–28
education programs, 20–21
Secondary teacher education, 1–2
Security Analytics, 168
Self-efficacy, 66–68, 70–71, 87–88
Self-realization, 184
Serial interpretation, 118, 144, 151, 154
counterstories, 152–153
learning in small moments, 153
Liberal Arts in STEM education, 153–154
in loco parentis, 152
same programs, different narrative histories, 151–152
Short-term impact of teachers, 136–137
Social Cognitive Theory (SCT), 87–88
Standardized test scores, 19–20
StatOil STEM Camp, 33, 74
“Stories to live by” concept, 140–141
Storying, 143–144, 164, 187
Storytelling, 186
Streamlined program, 37–38
Student Teaching (ST), 16–17, 19
Student(s)
 agency as, 170–171
 engagement, 172
 identity, 172, 186
 multilayered identities
devolution, 171–172
parents influence on Student success, 112–114
preparation, 30–31
professor acts as navigator for, 168–169
reflection, 18
teachers influence on student success, 137–138
Subject matter in curriculum making, 142
Summer STEM Camp, 93

relationships between learners and, 126
retention, 209
Teachers influences on students
 enrolling
 broadening, 143
 burrowing, 143–144
 conceptual framework, 139–142
 curriculum making, 141–142
 experience, 139–140
 fictionalization, 144
 identity, 140–141
Joyce Harding, 145–147
Leon Mitchell, 149–151
literature review, 137–139
narrative inquiry, 142–143
narrative research in STEM education, 138–139
Omid Kassem, 147–149
research methodology, 142–144
restorying, 144
serial interpretation, 144, 151, 154
small stories and meganarratives, 144–145
small stories of experience, 145–151
sources of evidence, 143
story, 140
storying, 144
teachers influence on student success, 137–138
tools of analysis, 143–144
undergraduate and graduate students, 145
teachHOUSTON program, 1–5, 9–10,
 27–28, 50, 52, 73, 92–93,
 136, 145, 153, 164, 166,
 169, 181–182, 187–190,
 192–193, 209–210,
 223–224, 227–229
additional opportunities through, 67–68
awards, 38
Teacher(s), 86, 141
 education models, 9–10
 education programs, 20–21, 68–69
efficacy, 88
implementer, 44–45
leader to master teacher, 217–218
leadership, 213–215
maker, 44–45
quality, 137
certified physics teacher production, 36–37
course descriptions, 18–19
culturally responsive pedagogy, 19–21
cumulative secondary science students taught by, 23
discipline specific teacher education courses, 70–71
enrollment by major, 204
and evolution, 12–16
findings, 210–211
graduates by gender, 206–207
graduates by major, 205–206
graduates by race/ethnicity, 207
graduation demographics, 205
intellectual lineage of teaching, 10–11
leading through innovation, 218–223
model of science as inquiry teacher education program, 24
Noyce conference, 35–36
Noyce Internship Institute, 93
Noyce scholarship and summer internship, 33
NSF Robert Noyce Program, 32
by numbers, 203–218
origins of, 10–12
physics and teacher education course development, 37
Physics by Inquiry course, 34–35
physics teacher production, 211–212
physics/teacherHOUSTON degree plans, 31–32
Professional Development Internship Institute, 33–34
program, 202
program enrollment, 203
recruitment to physics/teacherHOUSTON and Noyce programs, 32–33
required coursework for teacherHOUSTON certification, 16–17, 19
retention rate, 209
science as inquiry, 11–12
STEM graduates, 202–203
STEM teacher education program, 129
STEM teacher workforce diversity, 213
teacher leaders, 213–218
teacherHOUSTON/physics collaboration, 29–31
time to degree completion, 207–208
traditional workshops, 69–70
Teaching. See also Inquiry-based teaching, 19
intellectual lineage of, 10–11
professors inquiry stance toward, 169–170
reforms in Teaching science/physics, 45–47
style, 43
teaching-science-as-inquiry, 41–42
Teaching science as inquiry, 11
Team building activities, 78
Texas Education Agency (TEA), 44
Texas Essential Knowledge and Skills (TEKS), 11, 34–35, 44
Traditional teacher training, 67–68
UH-Advancing Cultural and Computational Engagement in STEM Scholars (UH-ACCESS), 212, 222–223
UK Department for Education, 19–20
Undergraduate students, 119–120, 145
Underrepresented students in STEM disciplines, 180–181, 196
University of Houston (UH), 9–10, 27–29, 87, 164
University of Houston–Leadership through Equity and Advocacy Development (UH-LEAD), 218–219

University Physics Courses, 51–52

University-based preservice teacher preparation programs, 86

University-based STEM programs, 136

University-based teacher preparation programs, 202

Urban schools, 20–21

Urban STEM teachers, 223

Urban student teaching, 19

Urban teacher education, 1–2

US Department of Education, 7–8, 182

Noyce Grant, 51

Noyce Scholarship program, 51

NSF Robert Noyce Program, 32

Scholarship grants, 164, 185

Scholarships in study, 181–182

STEM scholarship programs, 181

UTeach program, 12, 14, 27–28, 51–52

Validation, 164

Value, 185

Western Regional Noyce Conference (WRNC), 71–72

Workforce, 202