PREPARING TEACHERS TO TEACH THE STEM DISCIPLINES IN AMERICA’S URBAN SCHOOLS
ADVANCES IN RESEARCH ON TEACHING

Series Editor: Volumes 1–11: Jere Brophy
Volumes 12–29: Stefinee Pinnegar

Recent Volumes:

Volume 19: From Teacher Thinking to Teachers and Teaching: The Evolution of a Research Community
Volume 20: Innovations in Science Teacher Education in the Asia Pacific
Volume 21: Research on Preparing Preservice Teachers to Work Effectively with Emergent Bilinguals
Volume 22: International Teacher Education: Promising Pedagogies (Part A)
Volume 22: International Teacher Education: Promising Pedagogies (Part B)
Volume 23: Narrative Conceptions of Knowledge: Toward Understanding Teacher Attrition
Volume 24: Research on Preparing Inservice Teachers to Work Effectively with Emergent Bilinguals
Volume 25: Exploring Pedagogies for Diverse Learners Online
Volume 26: Knowing, Becoming, Doing as Teacher Educators: Identity, Intimate Scholarship, Inquiry
Volume 27: Innovations in English Language Arts Teacher Education
Volume 28: Crossroads of the Classroom: Narrative Intersections of Teacher Knowledge and Subject Matter
Volume 29: Culturally Sustaining and Revitalizing Pedagogies
Volume 30: Self-study of Language and Literacy Teacher Education Practices
Volume 31: Decentering the Researcher in Intimate Scholarship: Critical Posthuman Methodological Perspectives in Education
Volume 32: Essays on Teaching Education and the Inner Drama of Teaching: Where Biography and History Meet
Volume 33: Landscapes, Edges, and Identity-Making
Volume 34: Exploring Self Toward Expanding Teaching, Teacher Education and Practitioner Research
PREPARING TEACHERS TO TEACH THE STEM DISCIPLINES IN AMERICA’S URBAN SCHOOLS

BY

CHERYL J. CRAIG
Texas A&M University, USA

PAIGE K. EVANS
University of Houston, USA

DONNA W. STOKES
University of Houston, USA
CONTENTS

List of Figures and Tables vii
About the Contributors ix
List of Contributors xiii
Foreword xv

Overview of the Book 1
Cheryl J. Craig, Paige K. Evans and Donna W. Stokes

Overview of the teachHOUSTON Program 7
Paige K. Evans, Cheryl J. Craig, Donna W. Stokes and Jeffrey Morgan

Collaboration between a Physics Professor and a Physics Teacher/Teacher Educator 27
Donna W. Stokes, Paige K. Evans and Cheryl J. Craig

A Narrative Inquiry into Teaching Physics as Inquiry: One Teacher’s Journey 41
Paige K. Evans, Donna W. Stokes and Cheryl J. Craig

Enhancing Preservice Teacher Preparation through Formal and Informal Learning Experiences 65
Donna W. Stokes and Paige K. Evans

Examining the Impact of Informal Experiences on Preservice Teachers’ Self-efficacy 85
Paige K. Evans, Leah McAlister-Shields, Mariam Manuel, Donna W. Stokes, Ha Nguyen and Cheryl J. Craig
Parents’ Influence on Undergraduate and Graduate Students’ Entering the STEM Disciplines and STEM Careers
Cheryl J. Craig, Rakesh Verma, Donna W. Stokes, Paige K. Evans and Bobby Abrol

In Praise of “Unsung Teachers”: Teachers’ Influences on Students Enrolling in STEM Programs with the Intent of Entering STEM Careers
Cheryl J. Craig, Paige K. Evans, Rakesh Verma, Donna W. Stokes and Jing Li

The Influence of Professors on Students Enrolled in the STEM Programs with the Intent of Embarking on STEM Careers
Jing Li, Paige K. Evans, Cheryl J. Craig, Donna W. Stokes, Rakesh Verma and Gang Zhu

The Value of STEM Scholarship Grants to Undergraduate and Graduate Students Intending to Study the STEM Disciplines and Pursue STEM Careers
Jing Li, Cheryl J. Craig, Tenesha Gale, Michele Norton, Gang Zhu, Paige K. Evans, Donna W. Stokes and Rakesh Verma

Where Are the teachHOUSTON Preservice Candidates Now? Are They Still in the Urban Teacher Force?
Paige K. Evans, Mariam Manuel, Ha Nguyen, Donna W. Stokes, Cheryl J. Craig, Xiao Han and Jeffrey Morgan

Final Words
Cheryl J. Craig, Paige K. Evans and Donna W. Stokes

Index
LIST OF FIGURES AND TABLES

Figure 1. Percentage of High School Science Teachers Assigned Out of Field in Texas from 1999 to 2008 by Student Poverty. 9
Figure 2. Percentage of High School Mathematics Teachers Assigned Out of School in Texas from 1999 to 2008 by Student Poverty. 10
Figure 3. Characteristics of Culturally Responsive Pedagogy. 21
Figure 4. Ethnicity of teachHOUSTON Teachers vs US vs Texas teachers. 23
Figure 5. Cumulative Secondary Science Students Taught by teachHOUSTON Graduates (Cumulative Number of Students Taught Is an Estimate that Assumes that 90% of Graduates Will Go into Teaching and Will Teach 150 Students per Year.) 23
Figure 6. Model of Science as Inquiry Teacher Education Program. 24
Figure 1. Schwab’s Curriculum Commonplaces. 45
Figure 1. Study Implications. 104
Figure 1. Schwab’s Commonplaces of Curriculum. 112
Figure 2. Familial Commonplaces of Curriculum. 112
Figure 1. Three-dimensional Narrative Inquiry Space. 163
Figure 1. teachHOUSTON STEM Teacher Production. 203
Figure 2. teachHOUSTON Program’s Annual Enrollment. 204
Figure 3. teachHOUSTON Enrollment by Major. 204
Figure 4. teachHOUSTON Graduates per Year. 205
Figure 5. teachHOUSTON Graduates by Major. 206
Figure 6. teachHOUSTON Graduates by Gender. 207
Figure 7. teachHOUSTON Graduates by Race/Ethnicity. 208
Figure 8. teachHOUSTON Years to Graduate. 208
Figure 9. First time in college (FTIC) students’ Average Year to Degree Completion by Gender. 209
Figure 10. Location and Number of teachHOUSTON Graduate Teaching in School Districts in the Greater Houston Area. 211
Figure 11. Creating a Diverse Teacher Workforce: teachHOUSTON versus Texas versus United States. 214
Figure 12. Schools Placement of Master Teacher Fellows (MTFs). 220

Table 1. Essential Features of Classroom Inquiry and Their Variations 13
Table 2. Description of teachHOUSTON Courses Needed for Teaching Certification. 17
Table 3. Incorporation of Culturally Responsive Pedagogy (CPR) into teachHOUSTON Field-based Courses. 22
Table 1. Graduation Numbers for Physics BS and Teacher Education Students for 2014–2019 by Academic Year. 36
Table 1. Essential Features of Classroom Inquiry and Their Variations. 46
Table 2. Data Collection Instruments, Frequency, and Number of Participants. 55
Table 3. Data Collection and Analysis by Research Question. 55
Table 1. Professional Development Workshop Topics for a Typical Fall and Spring Semesters. 69
Table 2. NOYCE Intern Week One Training Overview. 77
Table 3. NOYCE Intern Week Two Training Overview. 78
Table 1. Themes of Study and Illuminating Exemplars. 98
Table 1. teachHOUSTON Graduates’ Years of Teaching Experience. 210
Table 2. Current Careers of teachHOUSTON Graduates. 210
Table 3. Graduation Numbers for Certified Physics Teacher 2014–2019 by Academic Year. 212
ABOUT THE CONTRIBUTORS

Bobby Abrol, PhD, studied in the Department of Curriculum and Instruction at the University of Houston, Texas. After her 2016 graduation, she relocated to India to work in the development sector. Currently, she is working with Tata Trusts as a Lead in the “Developing Teachers” strand of the Education portfolio. Her work provides dual opportunities to engage with both the policy makers at the Ministry of Education level and to understand the ground realities through the Trusts’ work in different States.

Cheryl J. Craig, PhD, is a Professor, the Houston Endowment Endowed Chair for Urban Education, and the Program Lead for Technology and Teacher Education at Texas A&M University. She is an American Educational Research Association (AERA) Fellow, a recipient of AERA’s Division B (Curriculum) Outstanding Lifetime Achievement Award and a winner of AERA’s Michael Huberman Award for Outstanding Contributions to Understanding the Lives of Teachers. The International Study Association on Teachers and Teaching (ISATT) has bestowed on her its highest honor: the ST2AR Award for Significant and Exemplary Contributions through Research, Teaching and Professional Service in the International Field of Teaching and Teacher Education.

Paige K. Evans, Ed.D, is the Associate Director and Clinical Professor for the STEM teacher preparation program, teachHOUSTON, in the Department of Mathematics at the University of Houston (UH) where she teaches and oversees courses in preservice STEM teacher education. Her research interests include STEM education, STEM teacher preparation and culturally responsive pedagogy. She is an American Physical Society Physics Teacher Education Coalition Fellow and a recipient of the UH Teaching Excellence Award, the UH Group Teaching Excellence Award, and the NSM John. C. Butler Teaching Excellence Award. She recently served as the president of the UTeach STEM Educators Association.

Tenesha Gale, PhD, completed her studies in the Department of Teaching, Learning and Culture, Texas A&M University. Her research focuses on community changes from suburban to urban and how those changes affect education for Black, Brown, and low socioeconomic students. She is currently teaching science in the Humble Independent School District and continuing her research.

Xiao Han, Ed.D, is a postdoctoral researcher in the Department of Teaching, Learning and Culture at Texas A & M University. She majored in Instructional Technology and received her master’s and doctoral degrees from George Mason
University and the University of Houston, respectively, and was the Director of Online Masters’ Degree program at St. Thomas University, Houston. Her interests focus on narrative inquiry, instructional technology and design, teacher education, online learning, and educational reform.

Jing Li, PhD, completed her program of studies at the College of Education and Human Development, Texas A&M University. She currently works as a Research fellow in the Faculty of Education, East China Normal University. Her research focuses on student experiences; teachers’ personal–professional development in urban and rural schools; teacher knowledge communities; teacher identity; teacher retention in high-needs areas; and narrative inquiry/digital narrative inquiry.

Mariam Manuel, PhD, is an Instructional Assistant Professor for the STEM teacher preparation program, *teachHOUSTON* in the Department of Mathematics at the University of Houston. She teaches undergraduate and graduate coursework in STEM education. Her research interests include STEM teacher education, engineering design education, and culturally responsive pedagogy.

Leah McAlister-Shields, Ed.D., is a lecturer and faculty advisor for the *teach-HOUSTON* Program in the Department of Mathematics at the University of Houston. Dr McAlister-Shields has served on several NSF grant-funded projects that support STEM college student success. Her research and teaching interests include college student sociocultural capital, matriculation, and persistence of underrepresented STEM majors and culturally responsive teaching in post-secondary settings.

Jeffrey Morgan, PhD, is an Associate Provost and Professor of Mathematics at UH. He is responsible for encouraging online program development, identifying instructional technologies, and overseeing software design, LMS administration, and central instructional design. Morgan is also the founder and director of the Center for Academic Support and Assessment and the co-founder and co-director of *teachHOUSTON*, HoustonACT, and the Math Contest. Previously, Morgan was the Department Chair of Mathematics and is an active teacher and researcher.

Ha Nguyen is a third-year PhD student in the Higher Education Leadership and Policy Studies at the University of Houston (UH). Nguyen’s research interests focus on college STEM student’s success and STEM teacher education. Nguyen is currently a research and teaching assistant for UH’s *teachHOUSTON* program. Prior to enrolling in her PhD program, Nguyen spent over 15 years working in the development sector in Vietnam. She served as a Monitoring and Evaluation Manager for the US Agency for International Development (USAID) in Vietnam.

Michele Norton, PhD, completed her studies in the Department of Teaching, Learning and Culture, Texas A&M University, College Station, TX. Currently, she is a Post-Doctoral Associate in the Department of Electrical Engineering at Texas at A&M University. She wrote a Texas A&M T3 Grant that funded the
study of Emotional Intelligence (EI) of engineering students. Norton’s research interests are in STEM education, engineering design process, design thinking, creativity, coaching, and social and emotional learning. She is currently working on two NSF-funded grants aimed at developing teachers and leaders in STEM Education.

Donna W. Stokes, PhD, is a Professor in the Physics Department and Associate Dean for Undergraduate Affairs and Student Success in the College of Natural Sciences and Mathematics at University of Houston (UH). Her scientific research focuses on understanding the structural/optical properties of semiconductors. Her education research focuses on physics/STEM student success and teacher education. She received her PhD at UH and was a postdoctoral researcher at the Naval Research Laboratory. She is an American Physical Society Physics Teacher Education Coalition Fellow and has been a recipient of a NSF Early Career Award, an UH Excellence in Group Teaching Award, and the Provost’s Faculty Advising Award.

Rakesh Verma, PhD, is a Professor in the Department of Computer Science in the College of Natural Sciences and Mathematics at the University of Houston. He has received the University of Houston’s Lifetime Faculty Award for Mentoring Undergraduate Research. This career award, given to one faculty member per year, acknowledges a professor’s exceptional efforts over the years in demonstrating a commitment to undergraduate education and research.

Gang Zhu, PhD, is an Associate Professor at the Institute of International and Comparative Education, East China Normal University. His expertise includes teacher education, urban education, and comparative education. He has published in such journals as *Urban Education, Cambridge Journal of Education*, and *Journal of Language, Identity, and Education*.
LIST OF CONTRIBUTORS

Bobby Abrol Developing Teachers Program Lead, Tata Trust, India

Cheryl J. Craig Professor, the Houston Endowment Endowed Chair for Urban Education, and the Program Lead for Technology and Teacher Education, Texas A&M University, Texas

Paige K. Evans Associate Director and Clinical Professor, teachHOUSTON program, University of Houston (UH), Texas

Tenesha Gale Science teacher in the Humble School District, Houston, TX

Xiao Han Postdoctoral Researcher, Department of Teaching, Learning and Culture, Texas A&M University

Jing Li Research Fellow, East China Normal University, Shanghai

Mariam Manuel Instructional Assistant Professor, STEM teacher preparation program, teachHOUSTON, University of Houston, Texas

Leah McAlister-Shields Lecturer and faculty advisor, teachHOUSTON Program, University of Houston, Texas

Jeffrey Morgan Associate Provost and Professor of Mathematics, University of Houston, Texas

Ha Nguyen Graduate Assistant in the College of Education at the University of Houston. Research Assistant with teachHOUSTON

Michele Norton Post-Doctoral Associate in the Department of Electrical Engineering at Texas A&M University

Donna W. Stokes Professor and Associate Dean, University of Houston (UH), Texas

Rakesh Verma Professor, University of Houston, Texas

Gang Zhu Associate Professor, East China Normal University, Shanghai
FOREWORD

teachHOUSTON: Interdisciplinary, Experiential STEM Reform

F. Michael Connelly

What is one to make of a book with the title *Preparing Secondary STEM Teachers to Teach in America’s Urban Schools* with what appears in the Abstract to have the subtitle *teachHOUSTON*? One part is rather grand and universal and the other more specific and local. I tend to think of subtitles, stated or implied, as reliable content descriptors. But my expectations faded as page after page and chapter after chapter unfolded. To be sure, *teachHOUSTON* names a concrete geographically limited program. The book assesses the status of teaching and learning in the STEM fields and describes a specific program to address the worrying picture that emerges. The program has direct consequences and possibilities for the Houston area. But the book as a whole and its account of this program addresses critical educational issues worldwide and demonstrates a kind of interdisciplinary action research rarely seen. Both the program and its practical demonstration of interdisciplinary action provide models useful in other jurisdictions and for other interdisciplinary sets. Unlike some, perhaps most, reform-oriented books, this one does not move inexorably step by step from problem to program to solution. Instead, different entry points and perspectives come in and out of focus in different chapters. Late in the book, in Final Words section, it is observed that the volume might be thought of as a mélange. Readers accustomed to step-by-step reform accounts might benefit by jumping from the opening overview chapters to Final Words section to better prepare them for the rich, original work found throughout. This book has insights and learnings for, and beyond, the STEM fields. Readers with different interests will find the book filled with suggestion and insight. Some of these possible readings follow.

The book describes a curriculum reform program in more or less standard educational change terms. The text begins with a thoughtful account of the educational learning problem, a description of the reform initiative to address the problem, and short-term demonstrations of evidence suggesting the problem is on its way to being solved. There is much to be learned about the status of STEM education and what might be done about it in the book’s pages. As a Canadian reader, I would have welcomed a slightly expanded global picture but the language used to address the problem is readily applicable to a larger landscape. But what grips my attention and makes this book special in the literature of STEM
education and educational reform is that suffusing a more or less traditional educational reform structure are two initiatives that warrant two follow-up monographs: interdisciplinary collaboration and the link between reform experience and content. It is well known that educational reforms rarely outlast the input of reform support and, when they do, they fade and become invisible over time. I am struck by the thought that this book describes two qualities that have a chance to defy these reform “facts.”

Joe Schwab (1960) who is featured throughout this book showed how scientists within disciplines adhere to particular forms of thought. Both he and the philosopher Kuhn (1970) pointed out that changing these formal ways of thinking constituted revolution within fields of inquiry. School education and the education of teachers are cross-disciplinary. The purpose is to educate persons, not advance inquiry in a discipline. It is reasonably well known that any curricular reform must be done in the context of all the other school subjects and disciplines. Add some science to the school day, subtract some geography. Thus, the STEM disciplines are inherently in conflict with one another in traditional educational reform. The reform brilliance of STEM is that it puts the disciplines on the same side. This, however, is where Schwab and Kuhn’s insight into forms of disciplinary thinking comes into play. If it is revolutionary for a scientist within a discipline to confront new ways of thinking about his or her discipline, consider the problem of STEM with different disciplines at work, each with their own traditions of thought. Moreover, educational scholars rarely fit easily among those in the traditional disciplines, thereby immensely confounding the interdisciplinary mix. Add to the interdisciplinary mix the voice and action of school teachers and teacher educators whose ends in view are the education of persons in contrast to the advancement of a discipline. The resulting logical interdisciplinary stew is immensely complex. This frames the work of the complex teachHOUSTON STEM Project. There is a telling study by Seymour Fox (1972), one of Schwab’s students, who sets up a curriculum deliberation study involving school-based educators and subject area academics. He found that the educators deferred to the academics such that this dimension of interdisciplinary planning was missing. But throughout this book remarkable things are described. Two academic university departments joined hands. Academic educators and school people joined in. Chapter by chapter, the reader is led through what I consider to be remarkable settings...mathematicians talking to scientists, professors learning from school teachers, teacher educators and curriculum specialists providing ideas, literature, and experiential research methods shaping the mix.

The picture that emerges is rich and borders on the edge of believability. I would love to see a follow-up manuscript that made the remarkable interdisciplinary qualities described herein the subject of inquiry. What does it take among the disciplines, and among educators and practitioners, to carry off a successful interdisciplinary collaboration? What difficulties were encountered? How were they conceptualized and solved? Is there any evidence that Schwab and Kuhn might have overdramatized forms of thought or, perhaps, that there are cultural
shifts toward more organic ways of thinking? Were there, one wonders, members of the teachHOUSTON team who were influenced by Chinese or Asian thought, which might have influenced the willingness to work across disciplinary lines of thought?

The second standout quality of this book is what I earlier called the link between reform experience and content. The massive international curriculum reforms of the last century, broadly falling under the heading of post Sputnik mobilization, led to an educational industry of reform and reform study. One of the mostly unchallenged insights from that industry is that telling school people what to do does not work. Yet it is clear that people with ideas about the practical value of their disciplines or their work look for ways to implement their ideas. People with good ideas about teaching and learning are perennially trapped in the logistic web of the wise and knowledgeable teaching the unwise and unknowledgeable. Returning to Schwab and Kuhn, and speaking rather broadly, the form of thought is one that the philosopher McKeon (1952) called logistic. Work out good ideas, and figure out how to train people to use them. The general failure of this form of thought about school change led to elaborate, often quite sensitive and responsive, ways of implementing ideas. Turned upside down, School-Based Reform took hold. teachHOUSTON stands in between and has it both ways. On the one hand, the best disciplinary ideas are at play. On the other hand, advanced notions of experience and their role in learning and in research method are at work. I know of no other major educational reform program that utilizes experiential method and theory in the context of an ongoing disciplines-based reform. The idea that the disciplines can bring insight and make a difference to schooling while, at the same time, learning from participating school practitioners is a rare quality in the study of educational reform. The fact that these processes are sufficiently recognized by teachHOUSTON participants at all levels to warrant specific research methodology built on the uncontrolled quality of experience is special. As with everything described in these pages, this quality requires intellectual strength and leadership along with collaborative interdisciplinary spirit and action. Again, I urge the authors/participants to consider a follow-up manuscript in their intended three-book series to unpack this “secret sauce” quality so vital to understanding teachHOUSTON and the interdisciplinary practices and research embedded in it.

My final thought is that in reflecting on my remarks about this book I have not been altogether transparent about my knowledge of the intellectual and practical dynamics at play. I was a student of Schwab and spent much time thinking about many of the issues discussed in this book. Moreover, I have followed Professor Craig’s work for many years and am aware of her international reputation in experiential school-oriented thought. I do not know with certainty that her Asian studies influenced the holistic interdisciplinary thinking evident in this book (Craig et al., 2018). But the shape of the teachHOUSTON project and of the book built around it is consistent with the philosophical and practical trajectory of Craig’s work. There must be something special about the Houston educational environment that brought so many diverse participants together in this atypical interdisciplinary, experiential, collaborative journey.
REFERENCES

