INDEX

American Educational Research
Association, 10
American Psychological
Association, 10
benchmarking, 7-8
bias
defined, 11-12
measurement, 11-15, 27
Black students, performance of, 12-13, 34-35, 148, 156

Chinese Taipei, 160-164. see also
Taiwanese test takers and performance
differences in OTL patterns, 118-125, 142
educational policies, 172-173
omission patterns, 110-116
professional development activities for teachers, 174
test speededness, 116-117, 143
test-wiseness patterns, 108-118
country selection, 25
country distinctions and the similarities, 62-74
criteria for selection, 38
distinct characteristics of
countries, 66-67
educational history and reform
efforts of countries, 39-40
factors impacting performance
analysis, 46
assessments, 60-62
measures, 44-45
school and instructional practices, 56-59
student-centered factors, 59-60
teacher factors, 51-56
test takers' home and background, 47-51
selected countries, 38-44
culture's impact on test-taking patterns, 33-35, 147-158, 166
analysis, 151-153
comparison of Black and White test takers, 148-149
high-context culture groups vs low-context culture groups, 152-157
measures, 151
research hypotheses, 150
differential item function (DIF), 12-15, 24
comparison of Black and White test takers, 12-13
conditions to conduct, 14-15
definition, 12
explanations and sources of, 14
educational accountability systems, 39
8th grade assessment, 3, 5
comparison of countries, 63-65, 67-71, 73-78, 89-107
cultural differences impact, 151-152, 154, 156-158, 163-164
differences in OTL patterns, 119-124
high-context culture countries, 158
influencing factors
home and background factors, 47-51
student-centered factors, 59-62
teacher factors, 51-59
item performance, 128, 132, 137, 142, 144
low-context culture countries, 157
percentage of omissions, 111116, 162
performance patterns, 80-81, 83-89
test speededness, 116-118
test-wiseness skills, 109-111
fairness issues on assessments, xiv
Filling in the Blanks: Understanding
the Black White
Achievement Gap, xiii
Finland, 160-164
differences in OTL patterns, 118-125, 142
educational policies, 173
omission patterns, 110-116, 145
professional development activities for teachers, 175
test speededness, 116-117, 143
test-wiseness patterns, 108-118
Finnish students, performance of
application of mathematical procedures, 61-62
average scale score and rank, 87-88
commonalities with other countries, 67-74
distinct characteristics of performance, 66-67
4th and 8th grade students, 75-76
frequency of assessments, 60-61
influencing factors
distractor choices, 144
home and background factors, 47-51
item bias, 138-139
nutrition issues, 50-51
parental expectations of children's educational goals, 50
school and instructional practices, 57-59
student-centered factors, 59-60
teacher factors, 51-56
math achievement scores, 85
vs. Qatari students, 95-96, 104-106
vs. Taiwanese students, 89-90, 97-100
vs. United States, 94-95, 103-104
p-value, 83-84, 128-129, 152
4th grade assessment, 4-5
comparison of countries, 63-66, 69-70, 72, 74-78, 89-107
cultural differences impact, 151, 153, 155-157, 164
differences in OTL patterns, 119-124
influencing factors
home and background factors, 47-51
student-centered factors, 59-62
teacher factors, 51-59
item performance, 127, 132, 135-136, 143
percentage of omissions, 111-116, 162
performance patterns, 80-82, 84-89
test speededness, 116-118
test-wiseness skills, 109-111
Graduate Record Examination (GRE), 18
high-context culture countries, and test performance, 34-35, 38, 68-69, 77, 152-157, 166
international assessments
benchmarking process, 7-8
comparison of major, 4
concerns and shortcoming of utilizing, 8-9
impact on education systems, 1-2
and policy, 6-7
test fairness, $9-10$
item bias, 11-12
identifying, 28-33, 128-129
sources of, 29-33, 130-135, 138-141
item-level performance, 27-28
contextual issues, 29, 130, 141-142
differences in omission patterns, 144-145
distractor choices, 24, 31-32, 133-134, 144-145, 162-163, 166
identifying item bias, 14, 28-33, 128-129
measures, 127-128
OTL differences, 19-21, 26-27, 30, 118-126, 130-131, 142, 168, 170
sources of item bias, 29, 130-135, 138-141
strategy formation and usage, 28, 31, 132-133, 143-146, 162-163
test speededness, 26, 30-31, 116-$117,131-132,142-143$
test takers' omit patterns, 32-33, 110, 134-135, 144-145, 162-163
test wiseness, $108-118,167-168$
low-context culture countries, and test performance, 34-35, 39, 68-69, 76-77, 152-157, 166
mathematics test performance, 13 , 31, 59-62, 168
of males and females in the United States, 13, 148
student-centered factors and, 59
variations in language and, 167
National Council on Measurement in Education, 10
No Child Left Behind Act (2002), 42-43
opportunity to learn (OTL), 19-21, 26-27, 30, 118-126, 142, 168, 170
parental expectations of children's educational goals, 47, 50, 68, 160

PIRLS, 4, 48-50, 58
predictive bias, 11-12
Program for International Student
Assessment (PISA), 2-3, 6-7
impact of, 7
PISA shock, 6
report, use of, 7
p-value, or the proportion of test, 83-84, 128-129, 152

Qatar, 160-164
differences in OTL patterns, 118-125, 142
educational policies, 173
omission patterns, 110-116
professional development activities for teachers, 174
test speededness, 116-117, 143
test-wiseness patterns, 108-118
variations in language and impact on performance, 167
Qatari students
application of mathematical procedures, 61-62
average scale score and rank, 87-88
commonalities with other countries, 67-74
distinct characteristics of performance, 66-67
4th and 8th grade students, 75-76
frequency of assessments, 60-61
impact of culture on test performance, 152-153
influencing factors
distractor choices, 144
home and background factors, 47-51
item bias, 137-138, 140
language of the test, 49-50
nutrition issues, 50-51
own room and Internet access, 48
parental expectations of children's educational goals, 50
school and instructional practices, 57-59
student-centered factors, 59-60
teacher factors, 51-56
math achievement scores, 86
vs. Finnish students, 95-96, 104-106
vs. Taiwanese students, 92-93, 101-103
vs. United States, 96-97, 106-107
p-value, 83-84, 128-129, 152
Science, Technology, Engineering, and Mathematics (STEM) fields and education, 3
Standards for Educational and Psychological Testing, 10-21
categorization of fairness, 11
differential item function (DIF), 12-15
general views of test fairness, $10-11$
item bias issues, 11-12
purpose of, 10
status of construct measured, 15
student performance
school and instructional practices, 56-59
student-centered factors, 59-60
teacher factors, 51-56
test takers' home and background, 47-51

Taiwanese test takers and performance, 40
application of mathematical procedures, 61-62
average scale score and rank, 87-88
commonalities with other countries, 67-74
distinct characteristics of performance, 66-67
4th and 8th grade students, 74-76
frequency of assessments, 60-61
impact of culture on test performance, 152-153
influencing factors
distractor choices, 144
home and background factors, 47-51
item bias, 136-140
item context, 141-142
language of the test, 49-50
nutrition issues, 50-51
own room and Internet access, 48
parental expectations of children's educational goals, 50
teacher factors, 51-56
math achievement scores, 85
vs. Finnish students, 89-90, 97-100
vs. Qatari students, 92-93, 101-103
vs. United States, 91-92, 100-101
p-value, 83-84, 128-129, 152
teaching to the test, 9
test and subtest performance, 25-27, 80-108
average scale score for each country, 87
for Chinese Taipei, 85, 87-93, 97-103
cycles of assessment administrations, 84-108
definitions of content domains, 81-83
for Finland, 85, 87-91, 94-100, 103-106
magnitude of difference between countries, 83-84, 89-108
p-value, or the proportion of test, 83-84
mathematics test, 80-83
measures, 80-83
OTL differences, 26-27
for Qatar, 86-88, 92-93, 95-97, 101-107
test wiseness, 26
for United States, 86-88, 91-92, 94-97, 100-101, 103-104, 106-107
test-based accountability measures, 9, 38, 42-43, 78
test developers, recommendations for, 170-171
test fairness, issues in
access to construct as measured, 15
cultural impact, 33-35, 166
equitable treatment, 11
language, 49-50, 66-67, 70, 72, 76, 167
measurement bias, 11-15, 165-166
opportunity to learn, 19-21
test content, 17
test context, 17-18
test response, 18-19
test-wiseness skills, 167-168
validity of interpretation, 15-19
test speededness, 26, 30-31, 116117, 142-143
test wiseness skills, 26, 108-118, 167-168
The Arbuthnot Assessment Fairness (TAAF) Framework, 23-35. see also country selection; culture's impact on test-taking patterns; item-level performance; test and subtest performance
phases, 23-35, 159-164
recommendations to stakeholders, 169-175
for improving pedagogical practices and improve learning, 173-174
for policy making, 172-173
for test developers, 170-171
strategy formation and usage, 31, 132-133, 143-145
utilization of, 169
12th grade assessment, 3, 5
Trends in International Mathematics and Science Study (TIMSS) assessment, 2-6
academic expectations, 60-61
content domains, 112-113
mathematics and science tests, domains of, 5
percentage of omissions, 110-111, 113-116
performance in different countries, 51-56, 89-107
questionnaire
academic expectations, 60
home and background factors, 45, 47-51
language skill, 48-49
learning environment, 59-62
learning mathematics, 59-60
own room and Internet access, 47-48
parental expectations of children's educational goals, 50
parent survey, 48-49
school and instructional practices, 56-59
teacher factors, 51-56
sampling strategy, 5
test speededness, 116-117

United States, 160-164
differences in OTL patterns, 118-125, 142
educational policies, 172-173
impact of culture on test performance, 148-150, 156
omission patterns, 110-116
professional development activities for teachers, 174
test speededness, 116-117, 143
test-wiseness patterns, 108-118
United States students, performance of
application of mathematical procedures, 61-62
average scale score and rank, 87-88
commonalities with other countries, 67-74
distinct characteristics of performance, 66-67
4th and 8th grade students, 75-76
frequency of assessments, 60-61
influencing factors
distractor choices, 144
home and background factors, 47-51
item bias, 136, 138-139
nutrition issues, $50-51$
parental expectations of children's educational goals, 50
school and instructional practices, 57-59
student-centered factors, 59-60
teacher factors, 51-56
math achievement scores, 86
vs. Finnish students, 94-95, 103-104
vs. Qatari students, 96-97, 106-107
vs. Taiwanese students, 91-92, 100-101
p-value, 83-84, 128-129, 152
White students, performance of, 12-13, 34-35, 148

