Note: Page numbers followed by "n" indicate notes.

Absolute change, 108	data and context, 45-46
Absolute polarization curve (APC),	direct approach based on
140–141	parametric Lorenz curves,
Adjusted headcount ratio, 111	40–43
Age pension schemes, 14	empirical illustration using UK
Aggregate effect, 117	data, 45
Aging, 7, 14–16	GICs for subgroups, 48–49
empirical analysis, 16–27	GICs for whole population, 46–48
populations, 6	for log-linear regression model, 53
theoretical background, 7–14	measuring pro-poor growth, 33-3
Alternative parametric models for	for mixture of log-normals, 54-55
Lorenz curves, 40	Monte Carlo simulation, 43–45
Alternative solution, 32	and tests for GIC, 38-39
Annualized absolute change, 113–114	Bennett and Hatzimasoura index, 2
Argentina	Bipolarization index, 139
household characteristics of VRSII	Brent algorithm, 50n2
sample visá-vis city and	
urban, 273–277	Cardinal entities, 2
microdata used for matching, 272	Cardinalized ordinal data, 9
urban agglomerations of, 269	Cardiovascular disease, 78
Asignación Universal por Hijo	Cash transfer benefits, matrix of,
(AUH), 280	280–283
At-risk-of-poverty (ARP), 208	Catholic Church, 270
threshold, 252	Censored headcount ratio (CH), 112
Atkinson indices, 79	Chile, 170
Attrition bias testing, 191–193,	intragenerational income mobility
201–205	in, 168
Average partial effects (APEs), 191	persistence at extremes of income
of state dependence, 191–193	distribution in, 176–182
	Chilean P-CASEN, 173
Bahia Blanca, 269–270	China Health and Retirement
Basic Monthly Current Population	Longitudinal Study
Survey, 249	(CHARLS), 15
Bayesian framework, 2, 32	Classic descriptive statistics, 272
Bayesian inference, 32	Classic Mintzer-type equations, 16
approach based on parametric	Combined <i>n</i> -poverty indicator, 250
assumptions of income	Complementary Social Salary, 287
distribution, 37–39	Confidence intervals, 32

Consumption equation, 17–18	Distributional Gini coefficient
Contextual predictors, 58	(DISGINI), 11
Country-specific threshold, 252	"Divide by 4 rule", 73 <i>n</i> 6
COVID-19, 249	Downward-looking status, 96
basic household characteristics	Dynamic discrete choice models, 173
of VRSII sample visá-vis	Dynamic hierarchical model, 60
city and urban Argentina,	Dynamic logistic hierarchical model, 2
273–277	Dynamic logistic model, 63
living conditions in slum area	Dynamic ordered probit models
during lockdown, 277–289	based on random effects
lockdown measures, 268–269	specifications, 186–187
methodology for analysis, 272–273	•
other microdata used for matching,	Earned income tax credit (EITC), 148
272	Econometric analysis, 224–226
pandemic, 1, 3–4	Econometric models, 58
pandemic, 208	Econometric strategies, 169, 182
Rosas II Area and Bahia Blanca at	initial conditions and correlated
Glance, 269–270	random effects problems
survey design and data collection	in short-period panel data,
protocols, 270–272	185–186
COVID-19, MEntal HEalth,	modeling joint low-income and
Resilience, and Self-	high-income persistence,
regulation (COME-HERE),	182–184
209, 210, 214, 226	Economic growth, 32
longitudinal survey, 210–211	Economic reforms, 14
Cumulative density functions	Economic security, 138
(CDFs), 10	Economic shocks, 170
Cumulative distribution, 38	Economic strain, 249–250
	measures of, 252–254
Data quality, 271	Economic uncertainty, 170
DCV, 11	Education, 209, 289
Demographic Health Survey (DHS),	Elasticity, 108, 113–114
106	growth, 120–127
Dibao effect, 16	Emergency family income (IFE), 280
Dibao program, 14	Employment, 209, 278–280
Dibao receipt, 23	Epidemic shock, 250
Dimensional inclusiveness, 108,	Equivalization, 174
116–118	Euro-area households, 250
Direct approach based on parametric	EUROMOD, 208
Lorenz curves, 40–43	Europe, poverty in, 208
Distribution-free empirical PGC, 35	Europe 2020 strategy, 249, 252
Distribution-free estimator, 32–33	European households, 248
Distribution-free inference, 34–37	incomes, 252
Distribution-free method, 43	Eurostat, 79
Distributional change, 150–154	Eurosystem HFCS, 251
Distributional effect, 117	Ex ante harmonization, 251

Index 299

Explanatory variables, 58 pro-poor judgments using, 33-34 Extreme hypothetical shock, 250, 255 for subgroups, 48–49 for whole population, 46–48 Face-to-face activities, 268 Family Expenditure Survey (FES), 32 Harmonized survey, 4 Hasse diagram, 83 Finances of European households economic strain, 249-250 Hazard rate models, 172 empirical evidence, 254–260 Headcount ratio, 208 HFCS, 251-252 Health, 6 measures of economic strain, inequality, 78 252-254 "Health poor" category, 81 nationwide lockdown, 248 Health poverty, 80 pandemic shock, 248–249 bootstrap confidence intervals Financial assets, 256 for first-and second-order First-order Markov process, 173 stochastic dominance, 93 First-order Utopia-Dystopia index on ordinal variables and health (FOUDI), 10 poverty measurement, Food (in)security, 285-289 80-83 Food insufficiency, 4 SAH category, 78–79 Food poverty line, 73n2 SAH in 29 European countries in Food security, 284, 288 2009 and 2018, 83-91 Forecasts and mobility analysis, 71–72 Seth and Yalonetzky index, 79 Foster-Greer-Thorbecke family Heterogeneity analysis, 209, 219-224 (FGT family), 209 High-income persistence, 171–172 index, 78 Horizontal inclusiveness, 108, 116 Foster-Wolfson bipolarization Household Wealth and Finance curve, 140 Consumption Survey, 4 Households, 248 Functional forms, 41–42 and implied quantile functions, 42 characteristics of VRSII sample visá-vis city and urban Gini coefficient, 28n5, 283 Argentina, 273–277 demographic variable, 272 Gini decompositions, 20 Gini indices, 79 deprivation indicators, 272 economic income, 157n4 Gini's transvariation, 11 income, 208-209, 211 Greatest degree of precedence (PRE-G), 81 labor incomes, 249 Gross income, 251 labor market attachment, 176 Gross national income (GNI), 106 poverty status, 58 Gross national product (GNP), 58 Human capital, 16, 176 Growth incidence curve (GIC), 32–33 Human development, 78 Human Development Report, 111 Bayesian inference and tests for, 38 - 39Bayesian inference for, 42–43 Implied quantile functions, 42 In-kind food aid, 283-285 for log-normal model, 37-38 for mixtures of log-normal Incidence, 211 densities, 38 of multidimensional poverty, 112

Inclusiveness, 111	India, 106
Income distribution	performance in income and other
approach based on parametric	social indicators, 107
assumptions of, 37	Indices, 95–96
Bayesian inference and tests for	Individual heterogeneity, 171
GIC, 38–39	Individual wellbeing, 14–15
GIC for log-normal model, 37–38	Inequality, 1–2, 32, 95, 139–140, 168, 211, 268
GIC for mixtures of log-normal densities, 38	as distance from equality, 96–97 index, 96
Income inequality, 168	Intensity, 211
Income losses for middle class groups, 268	Intensity of multidimensional poverty 112
Income mobility, 168, 170–171	Inter-temporal dependency, 170
Income of financially poor	Intermediate bipolarization
households, 256	indices, 140
"Income poor" households, 254	in Israel, 144–145
Income position in Chile	Intermediate median income, 3
annual income position at t	Intermediate polarization, 140
conditional of income	pro-middle class growth using
position, 220	approach to, 141–144,
average partial effect of state	162–165
dependence, 191–193	Intermittent slowdowns, 106
background, 170-173	International poverty line, 106
data and definitions, 173–176	Intragenerational income mobility in
econometric strategy, 182-186	Chile, 168
estimates of dynamic ordered	Inverse probability weights (IPW), 169
probit models based	Israel, intermediate bipolarization in,
on random effects	144–145
specifications, 186–187	Israeli equivalence scale, 144
estimation results, 186	
initial conditions and state	Kernel estimator, 35
dependence in both low	Kyrgyz Republic Integrated Sample
income and high income, 187–190	Household Budget and Labor Force Survey
intragenerational income mobility,	(KIHS), 62
169–170	Kyrgyzstan, modeling poverty
P-CASEN, 168–169	dynamics in, 62–72
persistence at extremes of income	
distribution in Chile,	Labor force participation, 139, 146
176–182	Latin America, 168
testing attrition bias, 201–205	Life satisfaction, 100
Income poverty, 4, 106, 110, 253	Likelihood function, 53
Income quintile group (IQG), 174	Likelihood ratio tests, 18–19
Income-based measures of poverty	Livelihoods during lockdown, 277–278

Index 301

Living conditions in slum area	Maximum inequality, 97–100
education, 289	application, 100–102
employment, 278–280	Maximum likelihood estimation,
food (in)security, 285–289	61–62
in-kind food aid, 283–285	Mean-variance adaptive Gauss-
livelihoods during lockdown,	Hermite quadrature, 184
277–278	meoprobit command, 184
during lockdown, 277	Meta-regression, 60
matrix of cash transfer benefits,	Micro-determinants, 58
280–283	Middle class in economic
Location, 7	development, 138
Lockdown measures, 268–270	Mincer equations, 16
living conditions in slum area	Minimum and maximum inequality,
during lockdown, 277–289	2–3
Log-linear regression model, Bayesian	Minimum inequality, 96–97
inference for, 53	Mixture model method, 38, 139
Log-normal model, 38, 43	Mobility, 170, 195 <i>n</i> 1
Bayesian inference for mixture of,	Monetary poverty, 106
54–55	Monte Carlo simulations, 2, 32, 43–45
GIC for, 37–38	MPI elasticity of censored headcount
Log-normal probability density	ratio (<i>e</i> (CH _d ;MPI)), 117
function, 37	Multidimensional distributional
Lorenz curve, 2, 32–34, 95	comparison techniques, 7
alternative parametric models for, 40	Multidimensional indices, 7
Bayesian inference for GIC, 42–43	Multidimensional poverty, 106
direct approach based on	(see also Health poverty)
parametric, 40–43	data, 118
functional forms and implied	dimensional inclusiveness, 116–118
quantile functions, 42	elasticities and semi-elasticities,
three usual functional forms, 41–42	113–114
timee as dar rame tromas, 11 12	growth elasticities, 120–127
M-point Gauss-Hermite quadrature,	horizontal inclusiveness, 116
184	India's performance in income and
Macro-conditions, 58	other social indicators, 107
Macroeconomic forecasts, 73 <i>n</i> 7	India's performance in various
Main respondent (MR), 15	social indicators, 109–111
Marginal effects, 19	methodology, 112
Markov chain Monte Carlo	
	methodology, 3, 111
techniques (MCMC	MPI, 112–113, 118–120
techniques), 2, 59, 65	MPI elasticity of censored headcount
Markov models, 185	ratios across states, 135
of transition to poverty, 173	per capita state domestic product
Matching procedures, 273	and net national product,
Material deprivation, 250	134
Matrix of cash transfer benefits, 280–283	relative changes in state-wise MPIs and incidences, 133

results, 118	Polarization measures, 139
uncensored elasticity of censored	"Population-average" coefficients, 66
headcount ratios across	Positional income mobility, 171
states, 136	Positional inconsistency, 182
vertical inclusiveness, 108, 114–116	Positional movement, 169–170
Multidimensional poverty index	Posterior predictive checks, 65
(MPI), 3, 106, 112	PovcalNet dataset, 249
indicators, 269	Poverty, 1, 32, 138, 182 (see also
Multidimensional wellbeing	Multidimensional poverty)
measurement, 6	ARP rates by NUTS 1 areas and
Multilevel/hierarchical models, 58	time, 236
C : H 1 1 11 252 254	ARP thresholds by country and
<i>n-financially poor</i> households, 253–254	household type, 237
National Family Health Survey	COME-HERE longitudinal survey
(NFHS), 111	210–211
National growth	in COVI D-19 era, 208
elasticity, 114	data, 210
semi-elasticity, 114	econometric analysis, 224–226
Nationwide lockdown, 248	in Europe, 208
Net disposable income, 251	heterogeneity analysis, 209–210,
Non-Dibao recipients, 19	219–224
Non-parametric tool, 139	household income, 208–209
Non-contributive pensions (NCP), 280	indices, 41
	main results, 214–219
OLS Regression analysis, 272	measurement, 139–140
Ordered probit Regression analysis,	methodology, 211–213
272	persistence, 195 <i>n</i> 2
Ordering, 9–10, 12–13, 24	poverty across countries and
Ordinal health inequality, 79	interview dates, 235, 238,
Ordinal monotonicity, 80	246
Ordinal Poverty Index, 80–81	poverty status and individual
Oster and Wolfson's index, 157 <i>n</i> 2	characteristics, 244–245
Outcome value function (OVF), 8, 10	poverty-contributing factors, 57–59
Own-state traps/shields, 182	relative TIP curves by country,
	interview date, and age, 232
Pandemic crisis, 249	relative TIP curves by country,
Parametric models, 32	interview date, and
Partial orderings, 82–83	employment status, 233
Pensions, 253	selection in analysis sample, 234
Percentage change, 108	sensitivity analysis, 226–228
Persistence at extremes of income	in single explicative model, 58
distribution in Chile,	subgroup decomposition of poverty
176–182	measures in France, 239
Personal income, 16	subgroup decomposition of
Physical assets, 176	poverty measures in
Polarization curves, 139	Germany, 240

Index 303

subgroup decomposition of poverty	Probability density function (pdf), 9, 12
measures in Italy, 241	Probability forecasts, 72
subgroup decomposition of poverty	
measures in Spain, 242	Quality of life, 78
subgroup decomposition of poverty	Quantile functions, 32, 42
measures in Sweden, 243	Quantitative variables, 78
traps, 171, 172	Questionnaire, 251, 271
varying effects of poverty	
determinants, 59–62	R function <i>uniroot</i> searches, 50n2
Poverty dynamics, 173	Random effect dynamic ordered probit
data and model choice, 62-66	model (REDOP model),
main empirical results, 66–72	170, 173, 182–183, 188, 191
modeling in Kyrgyzstan, 62	Ravallion and Chen growth incidence
Poverty growth curve (PGC), 35	curve, 1–2
Prioritarianism, 81	Regression analysis, 272
Pro-middle class growth, 138	Regression coefficients, 73 <i>n</i> 1
on absolute measure of, 160–162	Relative distribution, 139
using approach to intermediate	Relative index, 140
polarization, 141–144	Relative polarization, 139
database, 144	Repeated cross-sectional surveys
deriving absolute measure of,	modeling poverty dynamics in
140–141	Kyrgyzstan, 62–72
distributional change, 150–154	poverty-contributing factors, 57–58
downward trend in relative	structure of Kyrgyz society, 75–76
polarization, 145	study of poverty dynamics, 58
economic security, 138	varying effects of poverty
factors affecting change in	determinants, 59–62
polarization over time,	Residuals plot, 65
145–149	Responsiveness, 108
intermediate bipolarization in	Restricted minimum inequality, 97
Israel, 144–145	Restrictive property, 79
intermediate polarization and,	Root mean square error (RMSE), 43
162–165	Rural Dibao program, 14
intermediate polarization and crucial	Rufai Dioao program, 14
role of parameter, 145	Scale independent ordered categorical
intermediate polarization curves, 156	analysis, 21
poverty measurement, 139–140	Scarring effect, 171
results, 144	Self-assessed health (SAH), 78
· · · · · · · · · · · · · · · · · · ·	* **
upward trend in absolute	in 29 European countries in 2009 and 2018, 83
polarization, 145	
Pro-poor growth, 47, 138	computing family of indices, 83–88
distribution-free inference, 34–37	stochastic dominance analysis,
GIC, 33	88–91 Salf rated health 78
measuring, 33–37	Self-rated health, 78
pro-poor judgments using GIC,	Self-reported health or happiness
33–34	(SRH), 6

Semi-elasticities, 113–114 Unemployment Sensitivity analysis, 226–228 insurance, 171 Seth and Yalonetzky index, 79, 83-87 rate, 67-68 SF-6D index, 78 Uniform distribution, 97 Single-category deprivation, 80 Union-based identification, 111 Slum households, 270 United Nations Development living conditions in slum area Program (UNDP), 106 during lockdown, 277-289 Universal Child Allowance, 287 Social assistance, 14 Upper-middle-income, 175 Social distancing, 248 Upward-looking status, 96, 103n2 Social indicators, 106 Urban agglomerations of Argentina, Societal wellbeing calculus, 6 Society, 169 US Current Population Survey (CPS), Socioeconomic Household Panel Survey (P-CASEN), Utopia-Dystopia ordering, 9 168–169, 173–174 Stan (programming language), 73n5 Vertical inclusiveness, 108, 114–116 Villa Rosas II (VRII), 269, 273 Static poverty analysis, 58 Statistical tests, 32 household characteristics of VRSII Status, 96 sample visá-vis city and urban Argentina, 273–277 Stochastic dominance analysis, 88-91 Stochastic dominance conditions, 13 Rosas II Area and Bahia Blanca at Structural predictors, 58 Glance, 269-270 Subgroup decomposability, 81 Vulnerability as expected poverty Surface separation index (SS), 11 (VEP), 72 Sustainable Development Goals (SDGs), 106 Wealth, 249–253 poverty, 4, 250 Welfare policy, 149, 157 Theil index, 45, 79 Three "i"s of poverty (TIP), 211-212 Welfare programs, 6 Time-space varying intercepts, 67-68 Wellbeing, 1 Time-space varying slopes, 68-71 value function, 8 Total gross income, 252 Wellbeing evaluation function (WEF), Trickle-down, 138 True state dependence, 171 Wooldridge's method, 185 World Health Organization, 78 Un-modeled coefficients, 66 World Values Survey, 100 Uncensored headcount ratio (UH), 113 Zoning laws, 172