INDEX

Note: Page numbers followed by “n” indicate notes.

Adaptive Lasso, 116–117
Advanced Central bank interventions, 368–369
Aggregate, 121
uncertainty, 90
Agnostic shocks, 330, 336–338
Agnostic structural disturbances (ASDs), 336
Agriculture, 10
Alternative frequentist model averaging approaches, 264
American Statistical Association (ASA), 101
Approximate Bayesian Computation approach, 348n4
Approximate bias, 185
Asymmetric Laplace densities (ALD), 114
Augmentation strategy, 340
Autoregressive density (AR density), 123
Autoregressive distributed lag model (ARDL model), 391
Autoregressive processes, 226
Average daily temperature (AVG), 10
Average forecast accuracy, 144–148, 152–154
Average-type test, 180
Bank of England, 354
Bank of Japan, 354
Bates-Granger approach, 91
Bayes factor, 332
Bayesian approach, 94
Bayesian estimation, 332
for VAR models, 134–135
Bayesian framework, 348n4
Bayesian Lasso, 116
Bayesian MIDAS quantile regression, 3
methodology, 112
Bayesian model averaging (BMA), 261
Bayesian model fit, 332
Bayesian quantile regression (BQR), 112, 114–115
Bayesian MIDAS quantile regression, 113
density nowcasts, 120
estimation, 119
global-local shrinkage priors, 117–119
likelihood and conditional posteriors, 115
methods, 3
MIDAS quantile regression, 113–114
mixture normal prior, 119
nowcasting Euro area GDP growth, 122–129
parameter-specific shrinkage priors, 116–117
real-time data, 121–122
shrinkage priors, 115–116
Bayesian VAR (BVAR), 3, 134, 139–140
Behavioral model weight statistic, 265
Bias, 228–230
conditional, 239–248
Big data, 112, 129
Block matrix, 311–312
Blue Chip forecasts, 103–104
Break points estimation, 180
Business cycle synchronization, 278
Caixa Economica Federal, 1
Ceteris paribus, 90
Chicago Merchantile Exchange (CME), 16
China, 304
China Industrial Productivity (CIP), 315
Cholesky decomposition, 284–285
Classic ANOVA method, 98
Classic theory, 388
Climate change, 10
CMR model, 333–334, 339
Cobb-Douglas panel production function, 307
Combined estimator, structural breaks model and, 181–184
Common factors, 281–282
Conditional bias, 226, 239–248
Conditional forecast(ing), 171, 228
bias and MSE, 228–230
forecast error decomposition, 230–231
simulation-based estimators, 231–232
unknown break dates, 232–233
Conditional MSE, 235–239
Congressional Budget Office (CBO), 103
Constant parameters, 227
Consumer Confidence Indicator (CONS), 121
Cornwell, Schmidt, and Sickles model (CSS model), 314
Country-specific QE effectiveness, 373
Dollar factor, 377–378
GVAR model, 373–375
QE interventions contains real effects, 378–380
spillover effects from country-specific long-term interest rate changes, 375–377
world interest rate factor and loadings, 375
COVID-19, 354
announcements, 354, 356–357
bond yield and exchange rate impacts, 365–366
crisis, 377
emerging market interventions, 369–371
Fed interventions, 367–368
financial market impact of COVID-19 QE announcements, 364
other advanced Central bank interventions, 368–369
pandemic, 127–129, 387
QE, 360
robustness, 371–373
Cross-section dependence, 391
CSS model with time-varying fixed effects (CSSW), 316
CSS model with time-varying random effects (CSSG), 316
Cumulative ranked probability score (CRPS), 123
Data generating process (DGP), 162–163, 205, 259
Debt-management, 387
Debt–GDP ratio, 388–389, 396
threshold, 388
Decomposition method, 306
Dense data environments, 116
Density forecasting, 141–143 (see also Conditional forecast(ing))
Density forecasts, 152. (see also Point forecasts)
average forecast accuracy, 152–154
forecast accuracy for individual series, 154
tests for equal predictive accuracy, 154–156
Density nowcasts, 120
Diagonal blocks, 312
Dimension reduction techniques, 134, 137
BVAR, 139–140
factor augmented VAR, 137
LASSO, 139
partial least squares, 137–138
random compression, 138
random projection, 138
random subset regression, 139
Direct forecasts, 140
Dirichlet-Laplace (DL), 116
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disaggregate</td>
<td>121</td>
</tr>
<tr>
<td>Disagreement</td>
<td>92–94</td>
</tr>
<tr>
<td>Discrepancy measures</td>
<td>320, 333</td>
</tr>
<tr>
<td>Disagreement, general and specific</td>
<td>333–334</td>
</tr>
<tr>
<td>Disagreement, system wide</td>
<td>334–338</td>
</tr>
<tr>
<td>Distributed lag functions</td>
<td>113–114</td>
</tr>
<tr>
<td>Distributional temperature variation</td>
<td>10</td>
</tr>
<tr>
<td>Diurnal asymmetry</td>
<td>11</td>
</tr>
<tr>
<td>Diurnal temperature range (DTR)</td>
<td>2, 10–11</td>
</tr>
<tr>
<td>Dollar factor</td>
<td>377–378</td>
</tr>
<tr>
<td>Downward DTR</td>
<td>12–13</td>
</tr>
<tr>
<td>Duration statistic</td>
<td>265</td>
</tr>
<tr>
<td>Dynamic stochastic general equilibrium models</td>
<td>5, 286, 330–332</td>
</tr>
<tr>
<td>Error correction model (ECM)</td>
<td>391</td>
</tr>
<tr>
<td>Estimated posterior probability</td>
<td>258</td>
</tr>
<tr>
<td>European Central Bank (ECB)</td>
<td>1, 354, 360</td>
</tr>
<tr>
<td>European Commission (EC)</td>
<td>121</td>
</tr>
<tr>
<td>European sovereign debt crisis</td>
<td>278</td>
</tr>
<tr>
<td>European Union</td>
<td>279</td>
</tr>
<tr>
<td>Event set</td>
<td>363–364</td>
</tr>
<tr>
<td>Event study methodology</td>
<td>361–363</td>
</tr>
<tr>
<td>EViews code</td>
<td>20n3</td>
</tr>
<tr>
<td>Ex ante real rate</td>
<td>393</td>
</tr>
<tr>
<td>Ex post real rate</td>
<td>393</td>
</tr>
<tr>
<td>Exchange rate</td>
<td>5, 258</td>
</tr>
<tr>
<td>adjustment</td>
<td>281</td>
</tr>
<tr>
<td>Exponential-type test</td>
<td>180</td>
</tr>
<tr>
<td>Factor augmented VAR (FAVAR)</td>
<td>3, 134, 137</td>
</tr>
<tr>
<td>Factor-augmented classical quantile regressions</td>
<td>123</td>
</tr>
<tr>
<td>Factor-augmented quantile regressions</td>
<td>113</td>
</tr>
<tr>
<td>PPP</td>
<td>260</td>
</tr>
<tr>
<td>Macro modeling and policy analysis</td>
<td>5–6</td>
</tr>
<tr>
<td>meta modeling and policy</td>
<td>261</td>
</tr>
<tr>
<td>model instability and breaks</td>
<td>4</td>
</tr>
<tr>
<td>meta-NNT models forecasting</td>
<td>258–259</td>
</tr>
<tr>
<td>model averaging techniques</td>
<td>271–272</td>
</tr>
<tr>
<td>structural uncertainty</td>
<td>259</td>
</tr>
<tr>
<td>structural uncertainty</td>
<td>259</td>
</tr>
<tr>
<td>meta-NNT models forecasting</td>
<td>271–272</td>
</tr>
<tr>
<td>Financial crisis</td>
<td>148</td>
</tr>
<tr>
<td>Financial market impact of COVID-19 QE announcements</td>
<td>364–373</td>
</tr>
<tr>
<td>Financial time series</td>
<td>180</td>
</tr>
</tbody>
</table>
Financial Times, 2
Finite sample
 application, 248
 conditional forecasting, 228–233
 constant parameters, 227
 forecast error decomposition, 226–227
 forecast properties, 227
 model, 2229
 parameter instability, 227–228
 properties, 185–187
 replication of Hansen and Johansen, 248–250
 sample extension, 250–251
 window length selection, 233–248
First-order autoregressive model, 4
Flash estimates of quarterly GDP growth, 112
Forecast error, 92
decomposition, 226, 230–231
Forecaster heterogeneity, 91–92
 aggregate uncertainty, 90
 measures of forecast uncertainty and asymptotic properties, 95–96
 measures of historical uncertainty and tests for, 95
Monte Carlo simulation, 99–100
tests for forecaster homogeneity and asymptotic distribution, 97–99
uncertainty and disagreement, 92–94
underestimation of uncertainty in US GDP and inflation forecasts, 100–105
Forecasters, 3, 90
 homogeneity and asymptotic distribution, 97–99
Forecasting
 approaches, 136
 after break with misspecified model, 205–206
 choice of instruments, 170
 conditional, 228–233
density forecasting, 141–143
dimension reduction techniques, 137–140
exercise, 143–144
expected gains from switching between forecasts, 161–162
gains from switching between models, 162–166
iterated and direct forecasts, 140
models, 3, 160
performance, 160, 169
persistent regressors, 167–168
sources of specification error, 168–170
structural break, 187
switching rule, 160–161
time varying parameter forecasts, 140–141
Forecasts, 112, 204
 combination, 90
 uncertainty and asymptotic properties, 95–96
Foreign and International Monetary Authorities (FIMA), 382n2
FRED-MD database, 3
Free capital mobility, 279
Frequentist quantile regressions, 114
Gaussian nowcast density using principal components (Gau PCA), 125
Gaussianity, 123, 125
Generality, 227
Generalized impulse responses functions (GIRFs), 294–296, 378
Gibbs sampler, 119
Global financial crisis (2008), 125, 217, 278
Global Historical Climate Network database (GHCN), 11
Global interest rates, 394
Global QE, 354
Global value chain (GVC), 304
 network, 306
US–Sino Decoupling simulation in, 322–324
Global vector autoregressive modeling (GVAR), 1–2, 281
Global-local shrinkage priors, 117
 DL Priors, 117–118
 HS Prior, 118–119
 modeling, 358–359, 373–375
Government debt, deficits and interest rates
 advanced economies, 386
 background, 388–390
 baseline model, 395–396
 data, 392–395
 dependent variable, 399
 empirical results, 395
 estimators, 391–392
 lagged debt, 397–398
 long-run effect of world interest rate, 396–397
 World real interest rates, 387–388
Government deficits, 386
Graccident, 279
Great Recession, 354
Grexit, 279
Gross domestic product (GDP), 5, 279, 373, 386
 GDP-at-Risk nowcasts, 113, 125–127
Growth-at-risk estimates, 112
Hausman-Wu statistic, 317
Heterogeneity, 305
Heterogeneous learning model, 102
Heterogeneous technical progress in
 Solow residual, 307–308
Heteroskedasticity, 98
Heteroskedasticity and autocorrelation consistent (HAC), 11
Hicks-neutral technical change, 306, 310–311
High–order VARs, 330
Homogeneous productivity growth, 305
Homoscedasticity, 98
Horseshoe (HS), 116
Hypothesis testing, 1
Idiosyncratic error variances, 104
Impulse response function (IRF), 279, 283–284
Indicator saturation methods, 213
Individual forecasts, 3
Industrial Confidence Indicator (INDU), 121
Industrial production (IP), 121
Inflation puzzle, 279
Information set as within-quarter data accrue, 121–122
Inter-temporal budget constraint, 389–390
Interest rates, 278, 386–387
 parity fundamentals, 260
International Association of Applied Econometrics (IAAE), 2
International Monetary Fund, 1
International spillovers
 of economic growth, 305
 effects on productivity, 306
International trade, 304–305
 flows, 315
Iranian Economy, 1
Ireland’s model, 336–337
IS–LM model, 331
Iterated forecasts, 140
Joint probability distribution, 10
Jorda–Schularick–Taylor macrohistory database (JST macrohistory database), 386, 391–392
Kalman filter, 331, 339, 347
KLEMS database, 315
ℓ2-norm-based loss function, 279
LASSO, 116–117, 139
 estimator, 134
 shrinkage approaches, 3
Law of one price, 260
Learning-by-doing, 315
Levene test, 98
Likelihood
 and conditional posteriors, 115
 function, 314
Linear mixed-effects model, 102
INDEX

Linear Opinion Pool (LOP), 123
Location shifts, 204
Logarithmic score (logS), 123
Long differencing, 204
Low-order VARs, 330

Macro modeling, 5–6
Macro policy maker, 90
Macroeconomic/macroeconomy, 180, 278
aggregates, 280
Marginal data density (MDD), 5, 330, 332
Markov chain Monte Carlo techniques (MCMC techniques), 102
Markov Switching models, 331
Maximum temperature (MAX), 10
Mean group estimator (MG estimator), 391, 395
Mean square error (MSE), 181, 226, 228–230
conditional, 235–239
Mean squared forecast errors (MSFE), 181, 206
Membership in monetary union, 278
Meta modeling, 5, 259, 261–262
alternative frequentist model averaging approaches, 264
meta approach, 263–264
meta-NNT model, 265
model averaging, 262
model weights, 262
Meta-NNT models, 265, 267–269
forecasting performance, 271–272
Michigan Survey of Consumers, 91, 185
MIDAS quantile regression, 113–114
Minimum temperature (MIN), 10
Missing at random (MAR), 107n9
Misspecified functional form, 168–169
Mixture normal prior, 119
Model averaging, 5, 258, 262
Model checking, 330
Model confidence set (MCS), 264
Model instability, 258
Model misspecification, 135, 168
Model selection, 1
Model uncertainty audit, 94
Model weights, 262
Modeling structural uncertainty, 261
Monetary policy, 278
empirical results, 288
free capital mobility, 279
French independent, 293–294
generalized IRFs, 294–296
impulse response functions, 283–284
literature review, 280–282
matching weights, 289–291
methodology, 282
New Keynesian theory, 291
procedure, 284–288
puzzle, 291–292
synthetic control, 282–283
Monte Carlo simulations, 4, 99–100, 188–190
Monte Carlo study, 91
Monthly indicators, 121
Moran tests, 325n8
Moran's I test, 317
Most recent best forecasts (MRB forecasts), 264
Multi-step forecasting
Bayesian estimation for VAR models, 134–135
density forecasts, 152–156
forecasting approaches, 136–143
forecasting exercise, 143–144
point forecasts, 144–152
Multidimensional physical systems, 10
Multiple imputations (MIs), 102
Multi–Sector model, 348n5
Multivariate time series, 180
N-dimensional VEC model, 227
Naïve forecasting methods, 4
Naive robust forecasts, 206. (see also Robust forecasts)
random walk, 206–207
robust predictor, 207–209
Naive time–series models, 204
National Bureau of Economic Research (NBER), 101
Index

National debt, 386
Neoclassical growth paradigm, 305
Nested case, 165–166
New Keynesian models, 335, 347
New Keynesian theory, 291
New York Federal Reserve model, 330
Non-nested case, 163–165
Non-parametric approach, 287
Non-nested hypothesis–testing method (NNT method), 5, 259
Non-nested testing approach, 263–264
Non-sovereign assets, 362
Nonspatial model, 310
Not elsewhere classified (NEC), 322
Nowcasting, 113
Nowcasting Euro area GDP growth, 122
covid-19 pandemic, 127–129
evaluating nowcast densities, 123–125
GDP-at-risk, 125–127
Nowcasts, 112
NY Fed DSGE model set, 348n11
Office of Budget Responsibility (OBR), 204
Pair-wise comparisons of forecasts, 162–163
Parameter instability, 227–228
Parameter-specific shrinkage priors, 116–117
Parametric method, 287
Partial least squares (PLS), 3, 134, 137–138
Partial spatial Durbin model, 325n4
Persistent regressors, 167–168
Philadelphia airport (PHL), 11
distributions, 11–12
evolving seasonality, 15–16
fixed seasonality, 13–14
sequential and joint regression results for Philadelphia, 23–28
trend, 12–13
Point forecasts, 144. (see also Density forecasts)
average forecast accuracy, 144–148
forecast accuracy for individual series, 148–151
tests for equal predictive accuracy, 151–152
Policy analysis, 5–6
Policy response equation, 297
Policy variable, 392
Policymakers, 278
Pooled mean group estimator (PMG estimator), 391
Posterior predictive tests, 333
Pre-COVID-19, 354
Price, 5
puzzle, 279–280
Principal components, 3
Production functions, estimations of, 316–319
Production model, 5
Production technology, 309
Productivity growth of industries and spillovers, 320–322
sector-level analysis of, 306
Professional forecasters, survey of, 101–104
Public debt, 387–388
Purchasing power parity (PPP), 260
Puzzle, 291–292
Quantile regressions, 112–113. (see also Bayesian quantile regression (BQR))
Quantile-weighted probability score (QWPS), 123
Quantitative easing (QE), 6, 354
adoption in emerging markets, 360–361
advanced economies, 358–359
country-specific QE effectiveness, 373–380
impact of country-specific QE interventions, 354–355
COVID-19 QE Announcements, 356–357
event set, 363–364
event study methodology, 361–363
financial market impact of COVID-19 QE announcements, 364–373
global QE under COVID-19, 355
Quasi-maximum likelihood estimation method (QMLE method), 314

Random compression, 3, 138
Random number generator (RNG), 252n11
Random projection, 3, 138
Random subset regressions, 3, 139
Random subspace methods, 136
Random walk, 206–207
produce good out-of-sample forecasts, 4
smooth, 210–211
Real Time Data Set for Macroeconomists (RTDSM), 101
Real-time data, 121–122
Recursively weights (RW), 123
Regime uncertainty, 258
Reinterpreting robust forecasts, 209–210
Riksbank of Sweden, 354
Risk, 185
Robust forecasts
reinterpreting, 209–210
smooth, 210–213
Robust optimal weighting, 141
Robust predictor, 207–209
smooth, 211–213
Robustness, 371–373
Root mean square forecast errors (RMSFE), 218
Root mean squared error (RMSE), 95, 123
Root trace square error (RTSE), 249
Schmidt and Sickles model (SS model), 314
Seasonality, 19
evolving, 15–16
fixed, 13–14
Sector-level analysis of productivity growth, 306
Semi-parametric approach, 287
Semiparametric factor model, 325n8
Sequential modeling approach, 17
Sequential regression results for Philadelphia, 23–28
Sequential tests, 180
Shannon entropy statistic, 274n10
Shrinkage priors, 115–116
global-local shrinkage priors, 117–119
parameter-specific shrinkage priors, 116–117
Simulation
design, 233–235
simulation-based estimators, 231–232
Single-equation time-varying parameter models, 258
Skew-t density, 120
Smets and Wouters model (SW model), 340
Smooth random walk, 210–211
Smooth robust multi-horizon forecasts
additional simulation results, 222
empirical examples, 217
forecasting after break with misspecified model, 205–206
historical data vintages of UK Productivity, 223
naive robust forecasts, 206–209
reinterpreting robust forecasts, 209–210
robustify forecasts, 204
simulation evidence, 213–217
smooth random walk, 210–211
smooth robust forecasts, 210
smooth robust predictor, 211–213
UK Productivity, 217–219
US 10-year Treasury yields, 217–219
Social insurance programs, 386
Solow residual, heterogeneous technical progress in, 307–308
Solow-type production model, 325n1
residual productivity, 314
Sovereign debt, 390
 crisis, 280
Sparse data
 environments, 116
 sparse data-generating-process, 113
Spatial Durbin model (SDM), 306
Spatial econometric techniques, 305
Spatial interdependence, 308–309
Specification error, 168
 misspecified functional form, 168–169
 time-varying parameters, 169–170
Spillovers
 effects from country-specific long-term interest rate changes, 375–377
 productivity growth of industries and, 320–322
 of technology through factor input and technical change, 309–311
Stochastic frontier analysis (SFA), 314
Stochastic Search Variable Selection (SSVS), 116, 119
Structural breaks, 180, 204
 empirical analysis, 190–194
 estimation of regression parameters, 180–181
 finite sample properties, 185–187
 model and combined estimator, 181–184
 Monte Carlo simulation, 188–190
 of vector error correction, 226
Structural model, 333
Structural uncertainty, 259–261
Structural VAR (SVAR), 279
Supremum-type test, 180
Survey of Professional Forecasters (SPF), 91, 204, 217
Swiss National Bank, 354
Switching
 gains from switching between models, 162
 nested case, 165–166
 non-nested case, 163–165
 pair-wise comparisons of forecasts, 162–163
 rule, 160–161
 strategy, 3
Synthetic control, 282–283
System priors, 335
System wide discrepancy measures, 334
 targeting component parts of system, 334–335
 targeting VAR covariance matrix, 336–338
 targeting VAR dynamics, 335–336
Targeted discrepancy measures, 330
Targeting VAR
 covariance matrix, 336–338
 dynamics, 335–336
Taylor rule, 260
 models, 267
 regime, 281
Technology spillovers, 305, 308–309
 through factor input and technical change, 309–311
Temperature
 dynamics, 16
 extremes, 10
 variability, 10
Theory of war finance, 390
Time-varying parameters (TVP), 169–170, 341
 forecasts, 140–141
Trade, 304–305
Two-block VAR model, 285
U-MIDAS BQR application, 115
UBS, 1
UK Productivity forecasts, 217–219
 historical data vintages of, 223
Uncertainty, 92–94
 survey of professional forecasters, 101–104
 underestimation in US GDP and inflation forecasts, 100
Uncovered interest parity (UIP), 258, 358
Uniform policy making, 90
Unknown break dates, 232–233
Unrestricted mixed data sampling (U-MIDAS), 113
US 10-year Treasury yields, 217–219
US Federal Reserve, 354, 381
US Federal Reserve Bank, 6
US monetary policy, 279
US temperature dynamics, evolution of 15 Cities, 16
historically traded cities, 16–17
joint regression results for fifteen cities, 29–88
Philadelphia, 11–16
seasonality, 19
sequential and joint regression results for Philadelphia, 23–28
serial correlation, 19
trend, 17–19
US Unconventional Monetary Policy Spillovers, 373–380
US–Sino decoupling analysis, 307
data, 315–316
direct and indirect effect of input factors, 319–320
empirical results, 316
estimation, 314–315
estimations of production functions, 316–319
GVC, 306–307
heterogeneous technical progress in Solow residual, 307–308
intermediate product share in gross export between United States and China, 305
model, 307
productivity growth of industries and spillovers, 320–322
sector-level analysis of productivity growth, 306
simulation in global value chain, 322–324
spatial interdependence and technology spillovers, 308–309
spillovers of technology through factor input and technical change, 309–311
spillovers within country and across border, 311–314
US–Sino trade, 304
Variable-lag space FAVAR model, 152
VECM model, 332
Vector autoregressions (VARs), 3, 134, 330–331, 336
Vector error correction (VEC), 226
Volatility, 10
War debt, 390
Wilson-Hilferty cube root transformation, 99
Window length selection, 233
conditional bias, 239–248
conditional MSE, 235–239
results, 235
simulation design, 233–235
World Input–Output tables, 306
World interest rate, 386–387, 394
WORLD KLEMS database, 315
Yield curve, 249