To read this content please select one of the options below:

A Bayesian Model for Activation and Connectivity in Task-related fMRI Data

aUniversity of California Irvine, United States
bUniversity of California Santa Cruz, United States
cUniversity of California Irvine, United States
dKing's College London, United Kingdom
eKing Abdullah University of Science and Technology, Saudi Arabia

Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part A

ISBN: 978-1-78973-242-9, eISBN: 978-1-78973-241-2

Publication date: 30 August 2019

Abstract

We develop a Bayesian approach for modeling brain activation and connectivity from functional magnetic resonance image (fMRI) data. Our approach simultaneously estimates local hemodynamic response functions (HRFs) and activation parameters, as well as global effective and functional connectivity parameters. Existing methods assume identical HRFs across brain regions, which may lead to erroneous conclusions in inferring activation and connectivity patterns. Our approach addresses this limitation by estimating region-specific HRFs. Additionally, it enables neuroscientists to compare effective connectivity networks for different experimental conditions. Furthermore, the use of spike and slab priors on the connectivity parameters allows us to directly select significant effective connectivities in a given network.

We include a simulation study that demonstrates that, compared to the standard generalized linear model (GLM) approach, our model generally has higher power and lower type I error and bias than the GLM approach, and it also has the ability to capture condition-specific connectivities. We applied our approach to a dataset from a stroke study and found different effective connectivity patterns for task and rest conditions in certain brain regions of interest (ROIs).

Keywords

Citation

Yu, Z., Prado, R., Cramer, S.C., Quinlan, E.B. and Ombao, H. (2019), "A Bayesian Model for Activation and Connectivity in Task-related fMRI Data", Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part A (Advances in Econometrics, Vol. 40A), Emerald Publishing Limited, Leeds, pp. 91-132. https://doi.org/10.1108/S0731-90532019000040A006

Publisher

:

Emerald Publishing Limited

Copyright © 2019 Emerald Publishing Limited