Identification and Estimation of Dynamic Binary Response Panel Data Models: Empirical Evidence Using Alternative Approaches

Safety Nets and Benefit Dependence

ISBN: 978-1-78190-936-2, eISBN: 978-1-78441-110-7

ISSN: 0147-9121

Publication date: 6 August 2014

Abstract

We examine the roles of sample initial conditions and unobserved individual effects in consistent estimation of the dynamic binary response panel data model. Different specifications of the model are estimated using female welfare and labor force participation data from the Survey of Income and Program Participation. These include alternative random effects (RE) models, in which the conditional distributions of both the unobserved heterogeneity and the initial conditions are specified, and fixed effects (FE) conditional logit models that make no assumptions on either distribution. There are several findings. First, the hypothesis that the sample initial conditions are exogenous is rejected by both samples. Misspecification of the initial conditions results in drastically overstated estimates of the state dependence and understated estimates of the short- and long-run effects of children on labor force participation. The FE conditional logit estimates are similar to the estimates from the RE model that is flexible with respect to both the initial conditions and the correlation between the unobserved heterogeneity and the covariates. For female labor force participation, there is evidence that fertility choices are correlated with both unobserved heterogeneity and pre-sample participation histories.

Keywords

Citation

Kenneth Y. Chay and Dean R. Hyslop (2014). 'Identification and Estimation of Dynamic Binary Response Panel Data Models: Empirical Evidence Using Alternative Approaches', Safety Nets and Benefit Dependence (Research in Labor Economics, Volume 39). Emerald Group Publishing Limited, pp. 1-39

Download as .RIS

DOI

: https://doi.org/10.1108/S0147-912120140000039001

Publisher

:

Emerald Group Publishing Limited

Copyright © 2014 Emerald Group Publishing Limited

Please note you might not have access to this content

You may be able to access this content by login via Shibboleth, Open Athens or with your Emerald account.
If you would like to contact us about accessing this content, click the button and fill out the form.