To read the full version of this content please select one of the options below:

An exploration of binder jetting of copper

Yun Bai (Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia, United States.)
Christopher B Williams (Department of Mechanical Engineering and Department of Engineering Education, Virginia Tech, Blacksburg, Virginia, United States.)

Rapid Prototyping Journal

ISSN: 1355-2546

Article publication date: 16 March 2015

Abstract

Purpose

The purpose of this paper is to explore the use of binder jetting to fabricate high-purity copper parts. The ability to fabricate geometrically complex copper shapes would have implications on the design and manufacture of components for thermal management systems and structural electronics.

Design/methodology/approach

To explore the feasibility of processing copper via binder jetting, the authors followed an established material development process that encompasses powder selection and tuning process parameters in printing and thermal cycles. Specifically, the authors varied powder size and sintering cycles to explore their effects on densification.

Findings

Three differently sized copper powders were successfully printed, followed by sintering in a reducing atmosphere. It was found that a 15-μm-diameter powder with a sintering cycle featuring a 1,080°C maximum temperature provides the most dense (85 per cent) and pure (97 per cent) final copper parts of the parameters tested.

Research limitations/implications

Due to powder-based additive manufacturing techniques’ inherent limitations in powder packing and particle size diameter, there are difficulties in creating fully dense copper parts. To improve thermal, electrical and mechanical properties, future work will focus on improving densification.

Originality/value

The paper demonstrates the first use of binder jetting to fabricate copper artifacts. The resulting copper parts are denser than what is typically found in binder jetting of metal powders (without infiltration); significant opportunity remains to further optimize the manufacturing process by introducing novel techniques to tailor the material properties for thermal/electrical applications.

Keywords

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. #1254287. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. The authors acknowledge technical support provided by the ExOne Co. The authors also would like to thank Dr Alex Aning, Dr Tom Staley and Dr Suchicital (Virginia Tech Department of Material Science and Engineering) for their assistance. Special thanks is offered to Ms Jennifer Sprouse – a teacher researcher in Virginia Tech’s Research Experience for Teachers: Innovation-based Manufacturing program (NSF EEC #1200221) – for her assistance in conducting experiments.

Citation

Bai, Y. and Williams, C.B. (2015), "An exploration of binder jetting of copper", Rapid Prototyping Journal, Vol. 21 No. 2, pp. 177-185. https://doi.org/10.1108/RPJ-12-2014-0180

Publisher

:

Emerald Group Publishing Limited

Copyright © 2015, Emerald Group Publishing Limited