To read this content please select one of the options below:

Effect of print orientation on microstructural features and mechanical properties of 3D porous structures printed with continuous digital light processing

Javier Navarro (Fischell Department of Bioengineering, Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA)
Matthew Din (Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA)
Morgan Elizabeth Janes (Fischell Department of Bioengineering, Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA)
Jay Swayambunathan (Fischell Department of Bioengineering, Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA)
John P. Fisher (Fischell Department of Bioengineering, Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA)
Maureen L. Dreher (Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Applied Mechanics, US Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Applied Mechanics, Silver Spring, Maryland, USA)

Rapid Prototyping Journal

ISSN: 1355-2546

Article publication date: 6 August 2019

Issue publication date: 21 August 2019

318

Abstract

Purpose

This paper aims to study the effects of part orientation during the 3D printing process, particularly to the case of using continuous digital light processing (cDLP) technology.

Design/methodology/approach

The effects of print orientation on the print accuracy of microstructural features were assessed using microCT imaging and mechanical properties of cDLP microporous scaffolds were characterized under simple compression and complex biaxial loading. Resin viscosity was also quantified to incorporate this factor in the printing discussion.

Findings

The combined effect of print resin viscosity and the orientation and spacing of pores within the structure alters how uncrosslinked resin flows within the construct during cDLP printing. Microstructural features in horizontally printed structures exhibited greater agreement to the design dimensions than vertically printed constructs. While cDLP technologies have the potential to produce mechanically isotropic solid constructs because of bond homogeneity, the effect of print orientation on microstructural feature sizes can result in structurally anisotropic porous constructs.

Originality/value

This work is useful to elucidate on the specific capabilities of 3D printing cDLP technology. The orientation of the part can be used to optimize the printing process, directly altering parameters such as the supporting structures required, print time, layering, shrinkage or surface roughness. This study further detailed the effects on the mechanical properties and the print accuracy of the printed scaffolds.

Keywords

Acknowledgements

Funding and author details have been removed to allow blinded review.

Citation

Navarro, J., Din, M., Janes, M.E., Swayambunathan, J., Fisher, J.P. and Dreher, M.L. (2019), "Effect of print orientation on microstructural features and mechanical properties of 3D porous structures printed with continuous digital light processing", Rapid Prototyping Journal, Vol. 25 No. 6, pp. 1017-1029. https://doi.org/10.1108/RPJ-10-2018-0276

Publisher

:

Emerald Publishing Limited

Copyright © 2019, Emerald Publishing Limited

Related articles