To read this content please select one of the options below:

Effect of processing parameters on forming defects during selective laser melting of AlSi10Mg powder

Haihua Wu (College of Mechanical & Power Engineering, China Three Gorges University, Yichang, China)
Junfeng Li (The State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China)
Zhengying Wei (The State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China)
Pei Wei (Xi'an Jiaotong University, Xi'an, China)

Rapid Prototyping Journal

ISSN: 1355-2546

Article publication date: 28 January 2020

Issue publication date: 19 May 2020

656

Abstract

Purpose

To fabricate a selective laser melting (SLM)-processed AlSi10Mg part with almost full density and free of any apparent pores, this study aims to investigate the effect of ambient argon pressure and laser scanning speed on the particles splash during the AlSi10Mg powder bed laser melting.

Design/methodology/approach

Based on the discrete element method (DEM), a 3D model of random distribution of powder particles was established, and the 3D free surface of SLM forming process was dynamically tracked by the volume of fluid, where a Gaussian laser beam acts as the energy source melting the powder bed. Through the numerical simulation and process experimental research, the effect of the applied laser power and scanning speed on the operating laser melting temperature was studied.

Findings

The process stability has a fundamental role in the porosity formation, which is process-dependent. The effect of the processing conditions on the process stability and the resultant forming defects were clarified.

Research limitations/implications

The results shows that the pores were the main defects present in the SLM-processed AlSi10Mg sample, which decreases the densification level of the sample.

Practical implications

The optimal processing parameters (argon pressure of 1,000 Pa, laser power of 180 W, scan speed of 1,000 mm/s, powder layer thickness of 35 µm and hatch spacing of 50 µm ) applied during laser melting can improve the quality of selective laser melting of AlSi10Mg,

Social implications

It can provide a technological support for 3D printing.

Originality/value

Based on the analysis of the pore and balling formation mechanisms, the optimal processing parameters have been obtained, which were argon pressure of 1,000 Pa, laser power of 180 W, scan speed of 1,000 mm/s, powder layer thickness of 35 µm and hatch spacing of 50 µm. Then, a near-fully dense sample free of any apparent pores on the cross-sectional microstructure was produced by SLM, wherein the relative density of the as-built samples is larger than 97.5%.

Keywords

Acknowledgements

The research is supported by National Natural Science Foundation of China (Grant No. 51575313, No. 51775420).

Citation

Wu, H., Li, J., Wei, Z. and Wei, P. (2020), "Effect of processing parameters on forming defects during selective laser melting of AlSi10Mg powder", Rapid Prototyping Journal, Vol. 26 No. 5, pp. 871-879. https://doi.org/10.1108/RPJ-07-2018-0184

Publisher

:

Emerald Publishing Limited

Copyright © 2020, Emerald Publishing Limited

Related articles