To read this content please select one of the options below:

Rapid fabrication of ion optics by selective laser melting

Miguel Sangregorio (School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China)
Ningfei Wang (School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China)
Kan Xie (School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China)
Zun Zhang (School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China)
Xiaojun Wang (Hunan Farsoon High-tech Co., Ltd, Hunan, China)

Rapid Prototyping Journal

ISSN: 1355-2546

Article publication date: 18 October 2018

Issue publication date: 25 February 2019

162

Abstract

Purpose

Traditional ion optics manufacturing processes are complex and costly. The purpose of this paper is to study the feasibility of using selective laser melting (SLM) to produce additively manufactured ion optics.

Design/methodology/approach

An SLM machine was used to generate Ti6Al4V screen grids. The output was separated through wire cutting from the build platform and studied through a scanning electron microscope. To increase the geometrical accuracy of the original grid, samples consisting of nine-aperture arrays were fabricated with different parameter combinations, increasing the energy density. An empirical method to correlate the energy density applied in the fabrication process with the dimensional accuracy of the hole array positioning was developed through the analysis of multiple samples.

Findings

The SLM machine generated grids with optimal microstructure, the apertures fell within the specified tolerances and tolerances of slightly less than 10 µm can be guaranteed for the hole array positioning. The grids’ upper surfaces presented good-quality surface finish, and the lower surface quality was acceptable when the wire cutting process that separated the grid from the build platform performed slowly. Regardless of the build strategy, the stresses generated in the separation process caused the warping of the ion optic, so a flattening operation was necessary in all cases.

Originality/value

This research proved that SLM is a viable solution for ion optics fabrication, faster (less than 24 h) and less expensive (order of US$300) than traditional fabrication methods (with fabrication times from 24 to more than 400 h and costs from US$500 to US$5,000, depending on the material, size and shape).

Keywords

Acknowledgements

The equipment and materials used for this paper were provided by Hunan Farsoon High-Tech Co., Ltd. The authors would like to thank the Farsoon team (Dr Xu Xiaoshu, Bian Hong, Tang Jing, Fang Chenlu and Don Xu) for its support.

Citation

Sangregorio, M., Wang, N., Xie, K., Zhang, Z. and Wang, X. (2019), "Rapid fabrication of ion optics by selective laser melting", Rapid Prototyping Journal, Vol. 25 No. 2, pp. 299-307. https://doi.org/10.1108/RPJ-05-2017-0085

Publisher

:

Emerald Publishing Limited

Copyright © 2018, Emerald Publishing Limited

Related articles