To read this content please select one of the options below:

Numerical modeling of thermal anisotropy on a selective laser melting process

Juan Daniel Trejos (Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Centro de Investigación e Innovación en Ingeniería Aeronáutica, Apodaca, México)
Luis Arturo Reyes (Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Centro de Investigación e Innovación en Ingeniería Aeronáutica, Apodaca, México)
Carlos Garza (Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Centro de Investigación e Innovación en Ingeniería Aeronáutica, Apodaca, México)
Patricia Zambrano (Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Centro de Investigación e Innovación en Ingeniería Aeronáutica, Apodaca, México)
Omar Lopez-Botello (Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Monterrey, Mexico)

Rapid Prototyping Journal

ISSN: 1355-2546

Article publication date: 10 July 2020

Issue publication date: 29 September 2020

294

Abstract

Purpose

An experimental and numerical study of thermal profiles of 316 L stainless steel during selective laser melting (SLM) was developed. This study aims to present a novel approach to determine the significance and contribution of thermal numerical modeling enhancement factors of SLM.

Design/methodology/approach

Surface and volumetric heat models were proposed to compare the laser interaction with the powder bed and substrate, considering the powder size, absorptance and propagation of the laser energy through the effective depth of the metal layer. The approach consists in evaluating the contribution of the thermal conductivity anisotropic enhancement factors to establish the factors that minimized the error of the predicted results vs the experimental data.

Findings

The level of confidence of the carried-out analysis is of 97.8% for the width of the melt pool and of 99.8% for the depth of the melt pool. The enhancement factors of the y and z spatial coordinates influence the most in the predicted melt pool geometry.

Research limitations/implications

Nevertheless, the methodology presented in this study is not limited to 316 L stainless steel and can be applied to any metallic material used for SLM processes.

Practical implications

This study is focused on 316 L stainless steel, which is commonly used in SLM and is considered a durable material for high-temperature, high-corrosion and high-stress situations.

Social implications

The additive manufacturing (AM) technology is a relatively new technology becoming global. The AM technology may have health benefits when compared to the conventional industrial processes, as the workers avoid extended periods of exposure present in conventional manufacturing.

Originality/value

This study presents a novel approach to determine the significance and contribution of thermal numerical modeling enhancement factors of SLM. It was found that the volumetric heat model and anisotropic enhancement thermal approaches used in the present research, had a good agreement with experimental results.

Keywords

Acknowledgements

The authors of this work are grateful for the support of the Institutional Fund for Regional Development for Scientific, Technological and Innovation Development of CONACyT through the project Strengthening Aeronautics in Northeast México.

Citation

Trejos, J.D., Reyes, L.A., Garza, C., Zambrano, P. and Lopez-Botello, O. (2020), "Numerical modeling of thermal anisotropy on a selective laser melting process", Rapid Prototyping Journal, Vol. 26 No. 9, pp. 1555-1567. https://doi.org/10.1108/RPJ-02-2020-0032

Publisher

:

Emerald Publishing Limited

Copyright © 2020, Emerald Publishing Limited

Related articles