To read the full version of this content please select one of the options below:

Accounting for unadjusted news sentiment for asset pricing

Prajwal Eachempati (Department of IT Systems, Indian Institute of Management Rohtak, Rohtak, India)
Praveen Ranjan Srivastava (Department of IT Systems, Indian Institute of Management Rohtak, Rohtak, India)

Qualitative Research in Financial Markets

ISSN: 1755-4179

Article publication date: 18 May 2021

Issue publication date: 22 June 2021



A composite sentiment index (CSI) from quantitative proxy sentiment indicators is likely to be a lag sentiment measure as it reflects only the information absorbed in the market. Information theories and behavioral finance research suggest that market prices may not adjust to all the available information at a point in time. This study hypothesizes that the sentiment from the unincorporated information may provide possible market leads. Thus, this paper aims to discuss a method to identify the un-incorporated qualitative Sentiment from information unadjusted in the market price to test whether sentiment polarity from the information can impact stock returns. Factoring market sentiment extracted from unincorporated information (residual sentiment or sentiment backlog) in CSI is an essential step for developing an integrated sentiment index to explain deviation in asset prices from their intrinsic value. Identifying the unincorporated Sentiment also helps in text analytics to distinguish between current and future market sentiment.


Initially, this study collects the news from various textual sources and runs the NVivo tool to compute the corpus data’s sentiment polarity. Subsequently, using the predictability horizon technique, this paper mines the unincorporated component of the news’s sentiment polarity. This study regresses three months’ sentiment polarity (the current period and its lags for two months) on the NIFTY50 index of the National Stock Exchange of India. If the three-month lags are significant, it indicates that news sentiment from the three months is unabsorbed and is likely to impact the future NIFTY50 index. The sentiment is also conditionally tested for firm size, volatility and specific industry sector-dependence. This paper discusses the implications of the results.


Based on information theories and empirical findings, the paper demonstrates that it is possible to identify unincorporated information and extract the sentiment polarity to predict future market direction. The sentiment polarity variables are significant for the current period and two-month lags. The magnitude of the sentiment polarity coefficient has decreased from the current period to lag one and lag two. This study finds that the unabsorbed component or backlog of news consisted of mainly negative market news or unconfirmed news of the previous period, as illustrated in Tables 1 and 2 and Figure 2. The findings on unadjusted news effects vary with firm size, volatility and sectoral indices as depicted in Figures 3, 4, 5 and 6.


The related literature on sentiment index describes top-down/ bottom-up models using quantitative proxy sentiment indicators and natural language processing (NLP)/machine learning approaches to compute the sentiment from qualitative information to explain variance in market returns. NLP approaches use current period sentiment to understand market trends ignoring the unadjusted sentiment carried from the previous period. The underlying assumption here is that the market adjusts to all available information instantly, which is proved false in various empirical studies backed by information theories. The paper discusses a novel approach to identify and extract sentiment from unincorporated information, which is a critical sentiment measure for developing a holistic sentiment index, both in text analytics and in top-down quantitative models. Practitioners may use the methodology in the algorithmic trading models and conduct stock market research.



Eachempati, P. and Srivastava, P.R. (2021), "Accounting for unadjusted news sentiment for asset pricing", Qualitative Research in Financial Markets, Vol. 13 No. 3, pp. 383-422.



Emerald Publishing Limited

Copyright © 2021, Emerald Publishing Limited