Emerald logo
Advanced search

Ion-selective electrode made with LTCC (low temperature co-fired ceramics) technology

Karol Malecha (Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Wroclaw, Poland)
Marek Dawgul (Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Science, Warsaw, Poland)
Dorota G Pijanowska (Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland)

Microelectronics International

ISSN: 1356-5362

Publication date: 4 August 2014

Abstract

Purpose

The purpose of this paper is to focus on development and electrical characterization of miniature ion-selective electrode (ISE) for application in micro total analysis system or lab-on-chip devices. The presented ISE is made using low temperature co-fired ceramics (LTCC). It shows possibility of integration chemically sensitive layers with structures fabricated using modern microelectronic technology.

Design/methodology/approach

The presented ISEs were fabricated using LTCC microelectronic technology. The possibility of ISE fabrication on multilayer ceramic substrate made of two different LTCC material systems (CeramTec GC, Du Pont 951) with deposited thick-film silver pad is studied. Different configurations of LTCC/silver pad (surface, embedded) are taken into account. Electrical performance of all LTCC-based structures with integrated ISE was examined experimentally.

Findings

The preliminary measurements made for ammonium ions have shown good repeatability and linear response with slope of about 30-35 mV/dec. Moreover, no significant impact of the LTCC material system and silver pad configuration on fabricated ISEs’ electrical properties was noticed.

Research limitations/implications

The presented research is a preliminary work. The authors focused on ISE fabrication on LTCC substrates without any microfluidic structures. Therefore, further research work will be needed to evolve ion-selective membrane deposition inside microfluidic structures made in LTCC substrates.

Practical implications

Development of the LTCC-based ISE makes the fabrication of detection units for integrated microfluidic systems possible. These devices can find practical applications in analytical diagnosis and continuous monitoring of various biochemical parameters.

Originality/value

This paper shows design, fabrication and performance of the novel ISE fabrication using LTCC technology.

Keywords

  • Low temperature co-fired ceramics (LTCC)
  • Thick-film sensor
  • Thick-film technology

Acknowledgements

The authors wish to thank the National Science Centre (DEC-2013/09/D/ST7/03953) and Wrocław University of Technology (B30104) for financial support.

Citation

Malecha, K., Dawgul, M. and Pijanowska, D. (2014), "Ion-selective electrode made with LTCC (low temperature co-fired ceramics) technology", Microelectronics International, Vol. 31 No. 3, pp. 201-206. https://doi.org/10.1108/MI-11-2013-0072

Download as .RIS

Publisher

:

Emerald Group Publishing Limited

Copyright © 2014, Emerald Group Publishing Limited

Please note you might not have access to this content

You may be able to access this content by login via Shibboleth, Open Athens or with your Emerald account.
Login
To rent this content from Deepdyve, please click the button.
Rent from Deepdyve
If you would like to contact us about accessing this content, click the button and fill out the form.
Contact us
Emerald Publishing
  • Opens in new window
  • Opens in new window
  • Opens in new window
  • Opens in new window
© 2019 Emerald Publishing Limited

Services

  • Authors Opens in new window
  • Editors Opens in new window
  • Librarians Opens in new window
  • Researchers Opens in new window
  • Reviewers Opens in new window

About

  • About Emerald Opens in new window
  • Working for Emerald Opens in new window
  • Contact us Opens in new window
  • Publication Sitemap

Policies and information

  • Legal Opens in new window
  • Editorial policy Opens in new window & originality guidelines Opens in new window
  • Site policies
  • Modern Slavery Act Opens in new window

We’re listening — tell us what you think

  • Something didn’t work…

    Report bugs here

  • All feedback is valuable

    Please share your general feedback

  • Member of Emerald’s Library Advisory Network?

    You can start or join in a discussion here.
    If you’d like to know more about The Network, please email us

Join us on our journey

  • Platform update page

    Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

  • Frequently Asked Questions

    Your questions answered here