To read this content please select one of the options below:

Adapting M2 silicon half-wafers processing on industrial-scale equipment dedicated to 4″ solar technology

Messaoud Boumaour (Centre de Recherche en Technologie des Semi-conducteurs pour l'Energetique, Alger, Algeria)
Salim Kermadi (Centre de Recherche en Technologie des Semi-conducteurs pour l'Energetique, Alger, Algeria)
Samira Sali (Centre de Recherche en Technologie des Semi-conducteurs pour l'Energetique, Alger, Algeria)
Abdelkader El-Amrani (Centre de Recherche en Technologie des Semi-conducteurs pour l'Energetique, Alger, Algeria)
Salah Mezghiche (Centre de Recherche en Technologie des Semi-conducteurs pour l'Energetique, Alger, Algeria)
Lyes Zougar (Centre de Recherche en Technologie des Semi-conducteurs pour l'Energetique, Alger, Algeria)
Sarah Boulahdjel (Centre de Recherche en Technologie des Semi-conducteurs pour l'Energetique, Alger, Algeria)
Yvon Pellegrin (SERYTEC, Montpellier, France)

Microelectronics International

ISSN: 1356-5362

Article publication date: 17 May 2021

Issue publication date: 17 August 2021

66

Abstract

Purpose

The purpose of this study is to address the issue of technology equipment formerly dedicated to the process of 4- and even 5-inch photovoltaic cells and whose use has become critical with the evolution of silicon wafer size standards (M2–M10). Fortunately, the recent concept of 6'' half-cut cell with its many advantages appears promising insofar as it offers the possibility of further extend the use of costly, still operational process equipment, but doomed to obsolescence.

Design/methodology/approach

In the background of a detailed Al-BSF process, the authors show how to experimentally adapt specific accessories and arrange 6” half-wafers to enable the upgrade of a complete industrial process of silicon solar cells at a lower cost. Step by step, the implementation of the processes for the two wafer sizes (4” wafers and 6” half wafers) is compared and analyzed in terms of performance and throughput.

Findings

Globally, the same process effectiveness is observed for both types of wafers with slightly better sheet resistance uniformity for the thermal diffusion carried out on the half wafers; however, the horizontal arrangement of the wafer carriers in the diffusion and the plasma-enhanced chemical vapor deposition tubes limits the thermal balance regarding the total number of cells processed per batch.

Originality/value

In terms of the development of prototypes on a preindustrial scale, this paves the way to further continue operating outdated equipment for high-performance processes (passivated emitter and rear contact, Tunnel oxide passivated contact (TOPCon)), while complying with current standards for silicon wafers up to M10 format.

Keywords

Acknowledgements

This work was supported by the Algerian General Directorate of Scientific Research and Technological Development. The authors would like to gratefully thank M. Maoudj, Y. Boudiaf, A. Mekadem, F. Kerkar, M. Meribai, R. Challal, M. Bouteraa, A. Maaref and all the technical staff of the Technology & Characterization Services of the CRTSE.

Citation

Boumaour, M., Kermadi, S., Sali, S., El-Amrani, A., Mezghiche, S., Zougar, L., Boulahdjel, S. and Pellegrin, Y. (2021), "Adapting M2 silicon half-wafers processing on industrial-scale equipment dedicated to 4″ solar technology", Microelectronics International, Vol. 38 No. 2, pp. 55-59. https://doi.org/10.1108/MI-09-2020-0065

Publisher

:

Emerald Publishing Limited

Copyright © 2021, Emerald Publishing Limited

Related articles