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Abstract
Purpose – This study aims to propose a theoretical model to characterize the optimal forward freight
agreement (FFA) procurement strategies and investigate the determinants of FFA trading activities from a
new cross-market perspective.
Findings – A two-step model specification is used to empirically test the theoretical results for the Capesize,
Panamax and Supramax sectors. It is found that spot demand has a positive relation with FFA trading
volume for all three sectors. Moreover, spot demand volatility has a negative relation, while the correlation
between spot demand and spot rate has a positive relation with FFA trading volume for the Capesize and
Panamax sectors.
Originality/value – The results show that the expected spot demand is scaled by a “quantity
premium,” which is the product of a demand covariance term, a demand riskiness term and a demand
volatility term. This can be used by the traders in the FFA market to construct their hedging strategies.
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Paper type Research paper

1. Introduction
Since the past 20 years, the forward freight market has experienced a dramatic change.
After reaching a historical peak in 2007, its trading volume sharply decreased in 2008 and
2009, then maintained at a relatively stable level around one million lots in the recent six
years (except 2012, see Figure 1). As an important hedging tool, the forward freight
agreement (FFA) plays a significant role in risk management in the dry bulk and tanker
markets. An FFA is defined as a cash-settled contract between two counterparties to settle a
freight rate for a specified quantity of cargo or hire rate type of vessel in one or a basket of
the major shipping routes in the dry bulk and tanker shipping sectors at a certain date in the
future (Alizadeh et al., 2015a). Because of its remarkable value for the shipping theory and
the industrial practice, FFA draws much attention in the academic field. However, the FFA
market has long been dominated by financial institutions such as hedge funds and
investment banks, which treat the FFA as a speculation tool. In this paper, we aim to
investigate the hedging function of FFA and the determinants of the FFA trading volume
for the dry bulk shipping sector from a cross-market perspective (the spot market and the
future market). Through this study, we examine whether the FFA can play a hedging and
risk management role or only as a speculation tool.
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There are lots of studies on the dynamics of the FFA market, the relationship between
spot rates and FFA prices and risk management issues related to FFA. Kavussanos and
Visvikis (2006) make a survey for the literature on shipping derivatives including FFA. For
the issue of the dynamics of the FFA market, most studies investigate the volatility of FFA
prices or returns and their influencing factors. Koekebakker and Ådland (2004) use the
weekly time charter rates of a Panamax 65,000 dwt bulk carrier as a sample to investigate
the factors governing the dynamics of the forward freight rate curve. Batchelor et al. (2005)
explore the interrelationships between the bid-ask spreads and the FFA price volatility.
Kavussanos et al. (2010) examine the cross-market linkages and spillover effects between
FFAs and futures contracts on the commodities carried by Panamax vessels. Kavussanos
et al. (2014) investigate the economic spillovers between the freight derivatives markets of
the dry bulk shipping sectors and the derivatives of the commodities carried by the dry bulk
vessels.

For the issue of relations between spot rates and FFA prices, Kawssanos and Nomikos
(1999) examine the relationship between the futures prices and the realized spot prices in the
Baltic International Freight Futures Exchange (BIFFEX) market. Kawssanos and Nomikos
(2003) examine the causal relationship between futures and spot prices in the freight futures
market. Kavussanos and Visvikis (2004) use the vector error correction model (VECM)-
generalized autoregressive conditional heteroskedasticity (GARCH)-X model to examine the
lead-lag relationship in both returns and volatilities between spot and FFA prices for four
Panamax routes. Kavussanos et al. (2004a) investigate impacts of the introduction of the
FFA trading on the spot price volatility. Kavussanos et al. (2004b) use the same four routes
as a sample to investigate whether the FFA prices (one, two and three months before
maturity) are the unbiased predictors of spot rates. Batchelor et al. (2007) compared the
performance of vector auto regression (VAR), VECM and autoregressive integrated moving
average models in forecasting spot and FFA rates. The results indicate that FFA prices can
improve the forecasting performance of spot prices, but not vice versa. Tezuka et al. (2012)
establish an equilibrium price model to derive the spot price and future price formulae.
Moreover, they obtain an optimal hedge ratio based on their model. Zhang et al. (2014)
explore the lead–lag relationships in freight rates between spot and forward markets. Li
et al. (2014) use dynamic conditional correlation (DCC)-GARCH model to investigate the
spillover effects and dynamic correlations between spot and forward tanker freight rates
returns.

For the issue of FFA hedging and risk management, Tvedt (1998) derives an analytical
pricing formula for European futures options in the BIFFEX market. Kawssanos and
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Nomikos (2000a, 2000b) investigate the hedging ratios and hedging efficiency in the BIFFEX
market. Dinwoodie and Morris (2003) utilize the questionnaires to study the attitudes of
tanker shipowners and charterers toward freight hedging and their risk perceptions of FFAs.
Koekebakker et al. (2007) establish theoretical models to value the Asian-style options traded
in the freight derivatives market. Nomikos and Doctor (2013) carry out a comprehensive
study on the quantitative trading strategies in the FFA market for various contracts and
maturities with different trading rules. Alizadeh et al. (2015a) investigate the impact of
liquidity risk on FFA returns. Alizadeh et al. (2015b) examine the effectiveness of alternative
hedgingmethods in managing tanker freight rate risk based on Tanker FFAs.

Although there are many studies concerning different aspects of the FFA market, there
are very little research examining the relationship between the FFA trading volume and its
determinants from a cross-market perspective. Here, we focus our attention on the work of
Alizadeh (2013), who investigate the relationship between the FFA trading volume and FFA
price volatilities for Capesize, Panamax and Supramax sectors. In our paper, we aim to
explore the hedging function of FFA and the determinants of the FFA trading volume from
a different cross-market perspective. Although we work on a similar topic, there are still
some differences as follows:

� Different perspectives: Alizadeh (2013) explores the relation between the FFA trading
volume and its price volatility in the FFA market, while we investigate the impacts of
the spot demand volatility and the covariance between the spot rate and the spot
demand, or the covariance between the earning and the spot demand, on the FFA
trading volume. In other words, we mainly focus on the FFA hedging from a cross-
market perspective, while Alizadeh (2013) examines the speculation or arbitration of
FFA. To be consistent with the fact that many players in the practice trade FFA for
the purposes of speculation or arbitrage, we add the consideration of the speculation
or arbitrage function of FFA in our empirical studies. Still, we find that the demand
volatility in the spot market has a negative impact on the FFA trading volume, while
the covariance between the spot demand and the spot rate can influence positively the
FFA trading volume for the Capesize and Panamax sectors.

� Different theoretical basis: Alizadeh (2013) uses the theory of the mixture of
distribution of Clark (1973) to explain the contemporaneous relationship between
volatility and trading activity, while we establish a model on the inventory theory to
characterize the equilibrium of the FFA trading activity and its determinants.

� Different models to estimate the volatility: Alizadeh (2013) uses the EGARCH-X
model to estimate the FFA price volatilities, while we use the DCC-GARCH to
estimate the time-dependent spot demand volatility and the covariance between the
spot demand and the earning, as well as the covariance between the spot demand
and the spot rate. In the DCC-GARCH model, asymmetries are incorporated in a
broader fashion than in other types of multivariate GARCH models, i.e. the DCC-
MGARCH model does not assume constant correlation coefficients over the sample
period. Specifically, it allows for series-specific news shocks and smoothing
parameters and takes into account conditional asymmetries in correlation dynamics
and corrects for heteroskedasticity directly by using standardized residuals in the
estimation of correlation coefficients (Tsouknidis, 2016). Therefore, the dynamic
variance and covariance needed to verify our theoretical statements can be better
estimated.

Our work contributes to the literature in the following ways.
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Theoretically, we investigate the FFA hedging function and the determinants of dry bulk
FFA trading activities from a new cross-market perspective. Some existing literature
explores the determinants of FFA trading volume from the freight forward market itself, e.g.
FFA price volatility and FFA trading volume (Alizadeh, 2013). Others discuss the
relationship between prices in the spot and forward markets (Kavussanos and Visvikis,
2004; Kavussanos et al., 2004a, 2004b; Batchelor et al., 2007; Tezuka et al., 2012; Zhang et al.,
2014), or the volatility spillovers (Kavussanos et al., 2014; Tsouknidis, 2016), from a cross-
market perspective. In our paper, we propose a theoretical model to characterize the optimal
FFA procurement strategies to indicate the FFA hedging function. We prove that the
optimal FFA procurement quantity is the expected spot demand scaled by a “quantity
premium,” which is the product of a demand covariance term, a demand riskiness term and
a demand volatility term, from the perspective of hedging. We argue that besides FFA
prices, some factors in the spot market, e.g. spot rates, spot demand, spot demand volatility
and the covariance between the spot demand and spot rate, have impacts on the FFA
trading volume.

Empirically, we link our study with the existing literature which mostly examines the
dynamic of the FFA prices. Considering both the hedging and the speculation functions of
FFA in the empirical studies, our theoretical conclusions are tested and most of them are
verified in the Capesize and Panamax sectors. The empirical study results indicate that our
investigation on the FFA hedging from a cross-market perspective is valid. Moreover, our
empirical studies illustrate the procedure to obtain the parameters needed to determine the
optimal FFA procurement quantity when using the FFA hedging function. The empirical
equations between the FFA trading volume and its determinants can be used for the
possible applications of the FFA hedging.

The rest of the paper is organized as follows: Section 2 establishes a theoretical model to
characterize the optimal FFA procurement strategies for a buyer. Section 3 uses a two-step
model specification to empirically test the theoretical statements derived from Section 2.
Conclusions and possible directions for future research are summarized in Section 4.

2. Theoretical model
In this section, we establish a theoretical model to analyze the shipping capacity
procurement problem when a buyer faces uncertainties in the spot demand, spot rates and
shipping revenues. It is worthy pointing out that our theoretical model focuses on the
hedging function of FFA[1]. It is well known that shipping capacities cannot be stored.
Thus, procurement of shipping supply in the spot and forward markets for delivery on the
usage date is important in matching a buyer’s uncertain demand. Our model can
characterize the optimal FFA procurement strategies for a buyer. In our model, a buyer is an
agent who uses the shipping services, e.g. a shipper. To hedge the risk of the spot rate
fluctuation and the uncertain demand in the future, he procures some shipping capacities
now by a forward contract with delivery at a future time (of course, in any time before its
delivery, he can sell them in the market if it is profitable to do so. This can be considered
as the speculation or arbitrage function of FFA). Because the international dry bulk
shipping is a perfect competition industry (Pirrong, 1992), the sum of all buyers’ optimal
FFA procurement quantities is the market equilibrium volume. Therefore, we can
investigate the determinants and their impacts on the FFA trading volume by our model.

We consider a shipping capacity procurement problem in a finite horizon 0;T½ �. To
satisfy a shipping demand at time T, the buyer decides to procure q units of shipping
capacity at time 0 in a forward contract with delivery at time T. It could be argued that
FFAs are cash-settled instruments without any obligation whatsoever to deliver a transport
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service. However, if we consider a FFA’s hedging function, we could relate the FFA’s trade
with the transport service. According to the definition of FFA, it settles a freight rate for a
specified quantity of cargo at a certain date in the future. That means that the FFA’s trader
tries to avoid the future fluctuation of the freight rate using the FFA contract. When he sells
the FFA contract, the buyer implicitly undertakes the transfer of the transport services. The
FFA contract price is Fat time 0. The shipping demand D is a random variable at any time
before time T, and it becomes known at time T. The spot shipping price f and the buyer’s
marginal revenue r to fulfill the shipping business at timeT are random variables too. Thus,
the buyer faces the following optimization problem:

max
q

p ¼ E rmin q;Dð Þ þ f q� Dð Þþ � Fq
� �

(1)

where �ð Þþ ¼ max �; 0ð Þ, p is the buyer’s profit and E is the mathematical
expectation.

The first and the second terms in equation (1) are the buyer’s expected revenue from
shipping and selling the excess capacity on the spot market, respectively. The third term in
equation (1) is the buyer’s forward procurement cost. Therefore, the buyer faces a stochastic
optimization problem to determine his best procurement quantity in the forward market.
Similar models can be found in the trade of future commodity, e.g. natural gas (Secomandi
and Kekre, 2014).

Note that F is known by the buyer and D, f and r are unknown to the buyer when he
makes the procurement decision. To solve equation (1), we assume the demand D, the
buyer’s marginal revenue r and the chartering price f to follow the joint lognormal
distribution[2]:

logD
logr
logf

0
@

1
A�N

logMD � S2
D=2

logMr � S2
r=2

logMf � S2
f =2

0
B@

1
CA;

S2
D rDrSDSr rDf SDSf

rDrSDSr S2
r r rf SrSf

rDf SDSf r rf SrSf S2
f

0
B@

1
CA

2
64

3
75 (2)

where MD, Mr and Mf and SD, Sr and Sf are the mean values and standard
deviations of D, r and f , respectively. rDr and rDf are the correlation coefficients

between D and r and D and f , respectively.
logMD � S2

D=2
logMr � S2

r=2
logMf � S2

f =2

0
B@

1
CAis the mean vector, and

S2
D rDrSDSr rDf SDSf

rDrSDSr S2
r r rf SrSf

rDf SDSf r rf SrSf S2
f

0
B@

1
CA is the covariance matrix for

logD
logr
logf

0
@

1
A.

Solving equation (1), we obtain the optimal procurement quantityq, which can be implicitly
expressed as follows. The detailed proofs are shown in Appendix A.

MrU
logq�logMDþS2

D=2�rDrSDSr
SD

 !
�MfU

logq�logMDþS2
D=2�rDf SDSf

SD

 !

¼Mr�F

(3)

whereU :ð Þ is the standard normal distribution function.

MABR
3,3

260



Next, we explain the optimal condition equation (3) for the buyer’s procurement problem.
If the buyer procures too much shipping capacity in the forward market, he will have to sell
it in the spot market with the expected price Mf and obtain the expected net marginal
revenue Mr �Mf . Because the revenue and spot price are uncertain, the expected net
marginal revenue should be adjusted by their weights, which are related to the variance of
the demand, the correlations between the demand and the spot price, as well as the
correlations between the demand and the marginal revenue. The LHS of equation (3) is the
buyer’s weighted expected marginal overage revenues. On the other hand, if the buyer does
not procure enough shipping capacity in the forward market, his expected net marginal
revenue is Mr � F, which is the RHS of equation (3). Therefore, the economic insight of
equation (3) is that the buyer’s optimal FFA procurement quantity is to equal the weighted
expected marginal overage revenues and the expected marginal underage revenues.

Furthermore, if rDrSDSr � rDf SDSf , i.e. cov D; rð Þ � cov D; fð Þ, equation (3) can be
simplified as: logq ¼ logMD � S2

D=2þ rDf SDSf þ SDU�1 zð Þ or (4)

logq ¼ logMD � S2
D=2þ rDrSDSr þ SDU�1 zð Þ (5)

where z ¼ Mr�F
Mr�Mf

andU�1 :ð Þ is the inverse function of the standard normal distribution[3].
From equation (4) and (5), we know that the FFA trading volume (q) is related to the

expected spot demand (MD), the variance of the spot demand (S2
D), the covariance between

the demand and the spot rate (rDf SDSf ) or the covariance between the demand and the
earning (rDrSDSr), as well as the critical ratio (z). Exponentializing the both sides of
equations (4) or (5), we obtain:

q ¼ MDexp �S2
D=2

� �
exp rDf SDSf
� �

exp SDU�1 zð Þ
� �

(6)

or

q ¼ MDexp �S2
D=2

� �
exp rDrSDSrð Þexp SDU�1 zð Þ

� �
(7)

From equations (6) and (7), we can summarize a buyer’s optimal FFA procurement strategy as
follows. The optimal FFA procurement quantity is the expected spot demand scaled by the
demand covariance term (expðrDf SDSf Þ) and the demand riskiness term (exp½SDU�1 zð Þ�) and
descaled by the demand volatility term (expð�S2

D=2Þ). The latter three terms consist of a
“quantity premium.” Investigating the impacts of these determinants to the optimal trading
volume, we can obtain the following properties. The detailed proofs are shown in Appendix A:

� A positive relationship exists between the FFA volume and the expected spot
demand.

� A positive relationship exists between the FFA volume and the expected earnings.
� A positive relationship exists between the FFA volume and the expected spot rates.
� A negative relationship exists between the FFA volume and FFA prices.
� A positive relationship exists between the FFA volume and the covariance between

the spot demand and the spot rates (or the spot demand and the earnings).
� If the volatility of the spot demand is large, there is a negative relationship between

the FFA volume and the volatility of the spot demand; otherwise, there is a positive
relationship between the FFA volume and the volatility of the spot demand.
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From equations (4) or (5), we know that the impacts of the spot demand volatility to the FFA
trading volume come from two sources: the demand riskiness term SDU�1 zð Þ, which has a
positive impact, and the demand volatility term �S2

D=2
� �

, which has a negative impact. The
higher spot demand volatility can bring the possible higher revenue, but at the same time
the possible over-procurement and profit loss. The final impacts depend on their
interactions. Note that the demand volatility term is a quadratic function of SD, while the
demand riskiness term is a linear function of SD. Therefore, when the spot demand volatility
is large (or small), the demand volatility term dominates (or is dominated by) the demand
riskiness term, which causes the negative (or positive) impact to the FFA trading volume
finally.

In the next section, we will empirically test these statements.

3. Empirical tests
In this section, we use a two-step model specification. The first step is to measure the
variance of the spot demand, the covariance between the spot demand and the earnings and
the covariance between the spot demand and the spot rates. The DCC-GARCH (multivariate)
model is developed to make the estimation. In the second step, the items derived from the
DCC-GARCH model are used to analyze the relationship between the FFA trading volume
and the various factors by regressions. Finally, our theoretical statements are examined for
the three dry bulk shipping markets: Capesize, Panamax and Supramax. Similar two-step
estimation procedure can be found in other studies, e.g. Xu et al. (2011).

3.1 Data
The data set in this study consists of weekly FFA prices[4] (FFA), total trading volume
(VOL), spot rate indices (SR), fixture demand (FIX) and the earnings (EARNING) for three
dry bulk sectors, namely, Capesize, Panamax and Supramax, over the period of July 2009 to
February 2016. The FFA prices and trading volume are from the Baltic Exchange. Here, the
trading volume series are the total [cleared and over the counter (OTC)] trading activities for
all maturity contracts, which are not specific trading activities for first, second, third and
fourth nearest quarter FFAs. Weekly FFA prices for first, second, third and fourth nearest
quarter (FFA-Q1, FFA-Q2, FFA-Q3, FFA-Q4) are Thursday’s prices[5]. We choose these
four data series because they are considered as the most liquid contracts in the dry FFA
market (Alizadeh, 2013). The weekly spot rate indices and the earnings are directly from the
Clarkson SIN. The fixture demand is used to represent the spot market demand. The fixture
information is obtained from both the Clarkson SIN (2013-2016) and the Baltic Exchange
(2009-2012). After filtering the missing values and unusable information, a total of 10,687,
16,872 and 10,050 fixture observations are available for Capesize, Panamax and Supramax
dry bulk ships, respectively. Based on these data, we obtained the weekly fixture demand by
summing the corresponding “Dwt” or “Quantity” for the three bulk ships. The descriptive
statistics of these variables are shown in Table I.

From Table I, we find that the FFA trade volume and the spot demand of the Supramax
sector is much smaller than the other two sectors. Meanwhile, the standard deviations of
these two variables in the Supramax sector are smaller than the other two sectors. These
indicate that the Supramax market has low trading activities and liquidity. Moreover, all
variables seem to be normally distributed, and the Supramax FFA trade volume and spot
demand have higher skewness and kurtosis. Except these two variables, the others seem to
be nonstationary according to the PP test for all sectors.
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3.2 Methodology
3.2.1 Dynamic conditional correlation–GARCH models. To test the theoretical statements in
Section 2, we need to investigate the time-varying variance of the fixture demand, the time-
varying covariance between the fixture demand and the earning and the time-varying
covariance between the fixture demand and the spot rate. The DCC-GARCH models,
proposed by Engle (2002), are used to characterize the time-dependent conditional
covariance of the error terms. These models can detect possible changes in conditional
correlations over time, thus allowing for dynamic shocks in response to information.
Moreover, the DCC-GARCH model accounts for heteroscedasticity directly by estimating
correlation coefficients of the standardized residuals (Tsouknidis, 2016). Therefore, we use
the DCC-GARCH(1,1) model in this section.

In our study, the VAR representation is used as the mean equations, which are shown as
follows:

ln ERNtð Þ ¼ d1þ
Xn
i¼1

a1iln ERNt�ið Þþ
Xn
i¼1

b1iln SRt�ið Þþ
Xn
i¼1

c1iln FIXt�ið Þþ « 1;t (8a)

Table I.
Descriptive statistics

of FFA prices,
trading volume,

fixture demand, spot
rates and earnings

for different dry bulk
sectors

Variable Mean Median Std. dev. Skewness Kurtosis
Normality PP Test

Jarque-Bera p-Val PP Stat p-Val

Capesize
VOL 10,752.000 10,002.000 4,548.472 0.838 3.902 47.401 0.000 �9.820 0.000
FIX 6,523,324.000 5,704,875.000 3,001,588.000 0.856 3.229 39.073 0.000 �3.086 0.029
SR 2,204.716 1,838.100 1,315.736 1.120 4.309 88.064 0.000 �2.669 0.081
EARNING 18,237.300 12,333.340 14,747.610 1.449 5.064 165.623 0.000 �3.774 0.004
FFA-Q1 14,751.02 1,1750.00 9,287.83 1.397 4.235 120.980 0.000 �1.918 0.324
FFA-Q2 15,420.22 13,000.00 8,551.11 1.102 3.355 64.555 0.000 �1.882 0.341
FFA-Q3 15,818.01 13,000.00 8,350.24 1.398 5.217 164.971 0.000 �3.358 0.013
FFA-Q4 19,019.05 15,000.00 8,745.35 0.800 2.602 35.199 0.000 �2.373 0.150

Panamax
VOL 8,161.975 7,740.000 2,994.957 1.262 5.855 190.554 0.000 �11.435 0.000
FIX 3,821,475.000 3,783,616.000 932,392.800 0.404 3.736 15.699 0.000 �14.630 0.000
SR 1,449.577 1,080.200 926.528 1.310 4.112 106.383 0.000 �2.435 0.133
EARNING 10,045.110 8,334.274 5,740.809 1.425 4.590 139.821 0.000 �2.537 0.108
FFA-Q1 11,091.21 9,175.00 5,739.18 1.233 3.763 86.311 0.000 �1.243 0.657
FFA-Q2 12,332.50 10,625.00 5,825.21 1.322 4.242 110.576 0.000 �1.171 0.688
FFA-Q3 10,857.76 9,200.00 5,318.81 1.319 3.955 102.004 0.000 �1.624 0.469
FFA-Q4 11,920.40 10,400.00 5,447.57 1.060 3.232 58.954 0.000 �1.343 0.610

Supramax
VOL 2,286.521 2,065.500 1,134.552 1.610 7.492 427.646 0.000 �13.975 0.000
FIX 1,635,444.000 1,618,028.000 686,253.800 0.190 2.263 9.624 0.008 �10.843 0.000
SR 1,211.996 1,011.633 580.352 1.056 3.605 67.545 0.000 �1.582 0.491
EARNING 13,901.770 13,151.980 6,275.077 0.924 3.546 51.985 0.000 �1.347 0.609
FFA-Q1 11,408.15 10,387.50 4,288.96 0.878 3.091 41.478 0.000 �1.082 0.724
FFA-Q2 12,131.75 11,125.00 4,448.66 1.156 4.186 90.599 0.000 �1.111 0.712
FFA-Q3 11,207.03 10,087.50 4,134.54 1.004 3.591 58.835 0.000 �1.286 0.637
FFA-Q4 12,383.51 11,250.00 4,487.99 1.214 4.347 103.477 0.000 �1.765 0.398

Notes: The unit of measurement of VOL is lot. The unit of measurement of FIX is ton. The unit of
measurement of EARNING is $/day. The unit of measurement of EARNING is $/day. Jarque-Bera is the
Jarque and Bera test for normality. PP Stat is Phillips and Perron test for unit root
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ln SRtð Þ ¼ d2 þ
Xn
i¼1

a2iln ERNt�ið Þ þ
Xn
i¼1

b2iln SRt�ið Þ þ
Xn
i¼1

c2iln FIXt�ið Þ þ « 2;t (8b)

ln FIXtð Þ ¼ d3þ
Xn
i¼1

a3iln ERNt�ið Þþ
Xn
i¼1

b3iln SRt�ið Þþ
Xn
i¼1

c3iln FIXt�ið Þþ « 3;t (8c)

where « i;t is the error term of the conditional mean equation and the error vector conditional
covariance matrix of the vector ln ERNtð Þ; ln SRtð Þ; ln FIXtð Þ� �T

. The lag length n can be
determined by the Schwarz information criterion (SC).

The conditional covariance matrixHt can be expressed as:

Ht ¼ DtRtDt (8d)

where Dt ¼ diag h1=211;t; h
1=2
22;t; h

1=2
33;t

� �
indicates a diagonal matrix with time-varying standard

deviation on the diagonal. Here hii;t can be defined as a univariate GARCH(1,1) process:

hii;t ¼ v i þ ai«
2
i;t�1 þ b ihi;t�1;8i ¼ 1; 2; 3 (8e)

where ai and b i are non-negative scalars satisfying ai þ b i < 1. In addition, the
conditional correlation matrixRt can be specified as:

Rt ¼ diag q�1=2
11;t ; q�1=2

22;t ; q�1=2
33;t

� �
Qtdiag q�1=2

11;t ; q�1=2
22;t ; q�1=2

33;t

� �
(8f)

whereQt ¼ 1� u 1 � u 2ð ÞQ� þu 1zt�1z
0
t�1 þ u 2Qt�1 (8g)

with Q� being the unconditional variance matrix of the standardized residuals filtered by
the univariate GARCH process (8e) and the non-negative scalar u 1 and u 2 satisfying
u 1 þ u 2 < 1.

3.2.2 Linear regression models. After obtaining the variance of the fixture demand
(VARF), the covariance between the fixture demand and the earning (COVFE) and the
covariance between the fixture demand and the spot rate (COVFS), we establish the
regressionmodels for the three dry bulk shippingmarkets as follows:

ln VOLð Þ ¼ A0 þ A1ln FFAð Þ þ A2ln FIXð Þ þ A3ln ERNð Þ þ A4ln SRð Þ
þA5COVFSþ A6COVFE þ A7VARF þ A8FV

(9)

Here for each sector, the variable FFA is represented by the weekly average of the FFA daily
prices for first, second, third and fourth nearest quarter contracts, i.e. FFA-Q1, FFA-Q2,
FFA-Q3 and FFA-Q4, respectively. To investigate the speculation or arbitrage function of
FFA and their impacts on the FFA trading volume at the same time, in equation (9), we add
the term FV , which is the volatilities of the returns of FFA. Here, the return of FFA is
defined as RTt ¼ ln FFAtð Þ � ln FFAt�1ð Þ. According to the method proposed by Alizadeh
(2013), we use the GARCH model to calculate FV . The estimation results of the GARCH
model for the Capsize, Panamax and Supramax sector are presented in Appendix B.

By equation (9), we can investigate the relations between the FFA trading volume and
the corresponding factors to verify our theoretical statements in Section 2.
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3.3 Empirical results
The estimation results of the DCC-GARCH models for the different dry bulk shipping
markets are presented in Table II. The estimated time-varying conditional demand variances
and correlations generated from the DCC-GARCH model are illustrated in Figures 2-4. Their
descriptive statistics are summarized in Table III. From the results, we can observe that the
Capesize sector has the larger volatility of its spot demand and stronger covariance

Table II.
The estimates of

DCC-GARCH models
for different dry bulk

sectors

Mean equation Capesize Panamax Supramax

d1 �1.785*** (�3.515) �0.378 (�1.202) 0.218 (1.600)
d2 �0.567** (�2.011) �0.353 (�1.126) 0.075 (0.719)
d3 8.457*** (6.551) 10.400*** (5.692) 3.955*** (5.971)
a1 0.611*** (11.540) 0.839*** (25.004) 0.803*** (24.392)
a2 �0.179*** (-5.852) �0.105*** (�3.469) �0.075*** (�2.897)
a3 0.100 (1.155) 0.017 (0.261) 0.394*** (2.822)
b1 0.474*** (6.639) 0.117*** (4.417) 0.182*** (5.681)
b2 1.204*** (27.086) 1.065*** (43.107) 1.605*** (38.483)
b3 �0.241** (�2.270) 0.113 (1.583) �0.183** (�1.468)
c1 0.123*** (4.222) 0.066*** (3.195) 0.026*** (2.985)
c2 0.047*** (2.922) 0.055*** (2.678) 0.012* (1.810)
c3 0.512*** (6.389) 0.249* (1.894) 0.549*** (9.926)

Variance equation
v 1 0.000 (0.296) 0.004 (1.648) 0.002*** (4.025)
a1 0.011*** (57.011) 0.329** (2.202) 0.241*** (3.007)
b 1 0.989*** (105.582) 0.335 (1.041) 0.381*** (3.322)
v 2 0.000 (1.478) 0.002** (2.519) 0.001*** (2.801)
a2 0.129*** (2.930) 0.222*** (3.355) 0.615*** (5.748)
b 2 0.850*** (16.814) 0.562** (5.113) 0.239*** (2.350)
v 3 0.098*** (3.372) 0.045** (7.700) 0.003 (0.760)
a3 0.277 (1.504) 0.325 (1.597) 0.050* (1.737)
b 3 0.064 (0.482) 0.000** (2.923) 0.928*** (17.174)
u 1 0.031*** (67.534) 0.002 (0.100) 0.048 (1.644)
u 2 0.831*** (61.394) 0.980*** (75.399) 0.759*** (5.370)

Diagnostics
LogL 278.725 755.850 877.219
AIC 0.434 0.507 0.544
SC 0.427 0.487 0.514
ARCH(12) of ERN 0.253 (0.995) 0.314 (0.987) 0.262 (0.820)
ARCH(12) of SR 0.606 (0.837) 0.384 (0.969) 0.121 (0.998)
ARCH(12) of FIX 0.575 (0.862) 0.976 (0.861) 0.483 (0.924)

Notes: ***, **and *mean statistically significant at 1%, 5% and 10%, respectively. The t-statistics
is reported in the parenthesis. LogL is the log-likelihood. AIC is the Akaike information
criterion. SC is the Schwarz information criterion. ARCH(12) is Engle’s F-test for ARCH effects.
Figures in the brackets under the ARCH(12) estimates indicate the significance levels.

ln ERNtð Þ ¼ d1 þ a1ln ERNt�1ð Þ þ b1ln SRt�1ð Þ þ c1ln FIXt�1ð Þ þ « 1;t
ln SRtð Þ ¼ d2 þ a2ln ERNt�1ð Þ þ b2ln SRt�1ð Þ þ c2ln FIXt�1ð Þ þ « 2;t
ln FIXtð Þ ¼ d3 þ a3ln ERNt�1ð Þ þ b3ln SRt�1ð Þ þ c3ln FIXt�1ð Þ þ « 3;t

« tjXt�1� 0;Htð Þ, Ht ¼ DtRtDt , Dt ¼ diag h1=211;t; h
1=2
22;t ; h

1=2
33;t

� �
,

hii;t ¼ v i þ ai«
2
i;t�1 þ b ihi;t�1; 8i ¼ 1; 2; 3

Rt ¼ diag q�1=2
11;t ; q�1=2

22;t ; q�1=2
33;t

� �
Qtdiag q�1=2

11;t ; q�1=2
22;t ; q�1=2

33;t

� �
Qt ¼ 1� u 1 � u 2ð ÞQ þ u 1zt�1z

0
t�1 þ u 2Qt�1
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between its spot demand and spot rate (or earning) than the Panamax and Supramax
sectors. Meanwhile, the descriptive statistics of the volatilities of the FFA returns for
different sectors are summarized in Table III too. It can also be found that the Capesize sector
has the larger volatility of the FFA returns than the other two sectors. The larger volatilities
of these variables in the Capsize sector can be explained as follows. The main cargoes carried
by the Capesize carriers are iron ore and coal, while the Panamax and Supramax carriers can
operate more versatile and transport more types of dry bulk cargoes, such as grain, sulfure
and fertilizers (Kavussanos et al., 2014). As the world economy is deeply stuck in recession
since 2008, the demand for iron ore and coal slumped in recent years. It is easy to understand
that the volatility of the spot demand for the Capesize carriers is larger than other carriers. On

Figure 2.
The dynamic
covariance between
the fixture demand
and the earning for
different dry bulk
sectors
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the other side, the Capesize carriers have more volatile spot rates than other two carriers
(Alizadeh and Talley, 2011). Higher volatilities of both spot demand and freight rate mean
that the Capesize carriers’ demand is more price elastic and they have stronger covariance
between their spot demand and spot rates. Meanwhile, the speculation is more active in the
Capsize sector (which can be reflected by the larger volatility of the FFA returns) than the
other two because of the higher market demand.

The regression results of equation (9) are presented in Table IV, where Q1, Q2, Q3 and Q4
mean the cases that the weekly FFA prices for first, second, third and fourth nearest quarter
(FFA-Q1, FFA-Q2, FFA-Q3, FFA-Q4) are used to represent the values of the variable FFA in
equation (9), respectively. The columns of Q1, Q2, Q3 and Q4 show the corresponding values
of the estimated parameters when the FFA prices in the regression are represented by FFA-
Q1, FFA-Q2, FFA-Q3, FFA-Q4, respectively. From Table IV, we can obtain the following
observations:

� The spot demand is positively related with the FFA trading volume for all three
sectors. This is consistent with our theoretical analysis of Statement (i).

� The spot rate has the positive relation with the FFA trading volume for the Capesize
and Supramax sectors. This is consistent with our theoretical analysis of Statement
(iii). The reason is obvious that the rising expected spot rate brings more benefits if
buyers procure more transport capacity by the FFA trading.

Table III.
Descriptive statistics
of the variance of the
fixture demand, the
covariance between
the fixture demand

and the spot rate, the
covariance between
the fixture demand
and the earning and
the volatilities of the

FFA return for
different dry bulk

sectors

Variable Mean Median Std. Dev. Skewness Kurtosis
Normality PP Test

Jarque-Bera p-Val PP Stat p-Val

Capesize
COVFEC 0.019 0.018 0.0035 3.247 19.908 4606.23 0.000 �14.0535 0.000
COVFSC 0.014 0.013 0.0062 1.198 4.557 114.57 0.000 �6.092 0.000
VARFC 0.144 0.122 0.072 5.917 52.284 36072.2 0.000 �15.033 0.000
FV-Q1 0.0055 0.0042 0.0038 4.207 30.100 10501.49 0.000 �6.705 0.000
FV-Q2 0.0089 0.0042 0.0171 6.240 50.168 31344.16 0.000 �9.855 0.000
FV-Q3 0.0062 0.0036 0.0112 6.646 53.613 35598.95 0.000 �6.992 0.000
FV-Q4 0.0106 0.0077 0.0179 9.185 90.362 102939.8 0.000 �13.069 0.000

Panamax
COVFEP 0.00196 0.00179 0.0007 1.37 6.093 239.850 0.000 �10.306 0.000
COVFSP 0.0056 0.0051 0.0017 1.973 7.758 536.497 0.000 �11.679 0.000
VARFP 0.063 0.051 0.033 5.286 40.651 21474.770 0.000 �17.140 0.000
FV-Q1 0.0028 0.0020 0.0026 4.547 33.353 13093.91 0.000 �3.524 0.008
FV-Q2 0.0038 0.0024 0.0055 5.989 47.174 27581.10 0.000 �5.615 0.000
FV-Q3 0.0033 0.0020 0.0051 5.026 33.710 13576.15 0.000 �5.435 0.000
FV-Q4 0.006 0.005 0.0067 11.845 148.212 279615.0 0.000 �10.644 0.000

Supramax
COVFES 0.0007 0.0005 0.0021 0.909 8.738 508.740 0.000 �7.3116 0.000
COVFSS 0.0023 0.0018 0.0021 1.703 9.907 832.675 0.000 �8.132 0.000
VARFS 0.135 0.116 0.054 1.573 5.482 225.426 0.000 �2.263 0.185
FV-Q1 0.0022 0.0015 0.0029 6.540 55.808 41190.3 0.000 �5.483 0.000
FV-Q2 0.0021 0.0016 0.0017 4.621 28.697 10347.53 0.000 �4.289 0.001
FV-Q3 0.0020 0.0013 0.0033 7.443 66.907 57585.75 0.000 �10.660 0.000
FV-Q4 0.0018 0.0012 0.0024 5.231 32.896 13961.42 0.000 �9.626 0.000

Note: Jarque-Bera is the Jarque and Bera test for normality. PP Stat is the Phillips and Perron test for unit
root
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Table IV.
The estimates of the
regression models for
different dry bulk
sectors

Capesize Q1 Q2 Q3 Q4

A0 2.457** (2.304) 1.932* (1.910) 0.887 (0.894) 0.977 (1.010)
A1 �0.335*** (�4.392) �0.266*** (�3.582) �0.168** (�2.107) �0.195** (�2.310)
A2 0.387*** (7.187) 0.420*** (8.144) 0.456*** (8.839) 0.468*** (9.266)
A4 0.495*** (7.806) 0.422*** (7.013) 0.366*** (6.024) 0.362*** (6.089)
A5 13.844*** (2.606) 12.739** (2.450) 13.086** (2.244) 12.712** (2.217)
A7 �0.979*** (�2.928) �0.723** (�2.191) �0.734** (�2.167) �0.560* (�1.668)
A8 17.630*** (2.869) – – 2.724** (2.260)

Diagnostics
Adjusted R2 0.326 0.320 0.319 0.298
LogL �133.199 �137.005 �137.873 �132.71
F Statistics 26.076 29.240 28.713 22.891
AIC 0.898 0.902 0.919 0.901
SC 0.983 0.973 0.991 0.986
DW Statistics 1.520 1.478 1.492 1.550

Panamax
A0 5.617*** (4.755) 5.159*** (4.157) 5.530*** (4.309) 6.244* (5.199)
A2 0.154* (1.787) 0.135 (1.561) 0.142* (1.618) 0.081 (0.975)
A3 0.089** (2.012) 0.291*** (2.857) 0.263*** (2.633) 0.268*** (2.733)
A4 �0.175** (�1.995) �0.154* (�1.790) �0.188** (�2.181) �0.162* (�1.933)
A5 46.654*** (3.081) 61.096*** (4.082) 53.618*** (3.548) 58.729*** (4.059)
A7 �1.864** (�2.492) �2.119*** (�2.817) �2.044** (�2.504) �2.199*** (�3.050)
A8 20.464*** (2.658) – 13.483*** (3.177) –

Diagnostics
Adjusted R2 0.080 0.076 0.108 0.074
LogL �105.640 �104.826 �100.777 �91.926
F Statistics 6.397 6.228 7.262 4.845
AIC 0.713 0.699 0.691 0.630
SC 0.785 0.770 0.775 0.702
DW Statistics 1.351 1.353 1.373 1.417

Supramax
A0 3.021*** (2.923) 2.803*** (2.728) 2.696** (2.581) 2.805*** (2.739)
A2 0.181** (2.490) 0.183** (2.508) 0.191*** (2.593) 0.183** (2.513)
A4 0.253*** (3.970) 0.284** (4.660) 0.277*** (4.360) 0.284*** (4.672)
A7 1.642*** (2.687) 1.743*** (2.865) 1.806*** (2.937) 1.742*** (2.860)
A8 16.209* (1.757) – 15.684* (1.905) –

Diagnostics
Adjusted R2 0.109 0.102 0.117 0.111
LogL �215.643 �217.569 �208.757 �217.721
F Statistics 11.163 13.677 11.623 13.789
AIC 1.325 1.327 1.332 1.324
SC 1.382 1.372 1.391 1.369
DW Statistics 1.658 1.657 1.680 1.658

Notes: ***, ** and *mean statistically significant at 1%, 5% and 10%, respectively. The t-statistics is
reported in the parenthesis. The variables with insignificant estimates are deleted from the regression
equations. LogL is the log-likelihood. AIC is the Akaike information criterion. SC is the Schwarz information
criterion. ARCH(12) is Engle’s F-test for ARCH effects. Figures in the brackets under the ARCH(12)
estimates indicate the significance levels. ln VOLtð Þ ¼ A0 þ A1ln FFAtð Þ þ A2ln FIXt�1ð Þþ
A3ln ERNtð Þ þ A4ln SRtð Þ þ A5COVFSt þ A6COVFEt þ A7VARFt þ A8FVt
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� The spot demand volatility has the negative relationship with the FFA trading
volume for the Capesize and Panamax sectors. For the Capsize sector, this result is
consistent with our theoretical statements because the spot demand volatility of the
Capsize sector is the highest among the three sectors. The main cargoes carried by
the Capsize carriers, e.g., iron ore and coal, have higher demand volatilities[6], which
means higher risk for procuring more capacity in the forward market. Therefore,
buyers are more cautious about the FFA trading, especially when the volatility of
the spot demand is higher. This can restrain the FFA trading volume. One possible
explanation for the inconsistence of Statement (vi) in the Supramax sector is its
relative lower trading activities (Figure 5). The similar phenomenon and
explanations can be found in the relationship between the FFA price change and
trading volume in the work of Alizadeh (2013).

� The covariance between the spot demand and the spot rate displays a positive
relationship with the FFA trading volume in the Capesize and Panamax sectors.
This is consistent with our theoretical analysis of Statement (v). Higher covariance
between the spot demand and the spot rate means that buyers have more chances to
sell the excess capacity and obtain more revenues in the spot market. This can
encourage their trading enthusiasm in the forward market. Because of its lower
trading activities, this Statement is not significant for the Supramax sector too.

� FFA prices have a negative impact on the FFA trading volume only for the Capesize
sector, which occupies more than 50 per cent of the freight forward market
(Figure 5)[7]. This is consistent with our theoretical analysis of Statement (iv).

� In the half of all scenarios, the volatilities of FFA returns have significant and
positive impacts on the FFA trading volume, which indicates the speculation or
arbitrage exist in most players when they trade FFA. This result is consistent with
the literature addressing the speculation or arbitrage activities in FFA trade
(Alizadeh, 2013).

In summary, we find that in the Capsize sector, we obtain the most reliable results consistent
with our theoretical statements. This is mainly due to its more active trading and better
liquidity. The reliable results of the empirical studies in the Capsize sector not only partially
verify our theoretical statements, but also supply the traders in the FFA market a possible
way to construct their hedging strategies. From equations (6) or (7), we know that a buyer’s
optimal FFA procurement quantity is the expected spot demand multiplied by the quantity
premium, which is determined by the demand covariance term, the demand riskiness term
and the demand volatility term. Using the approach proposed by our empirical studies, one
can estimate the parameters in equations (6) or (7) and then construct the feasible hedging

Figure 5.
The FFA trading

volume percentages
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Panamax and

Supramax sectors
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strategy in practice. Moreover, our study indicates the impacts of the spot demand volatility
and the covariance between the spot demand and the spot rate to the FFA trading activities.
These impacts are not displayed by the other literature and can supply new insights to FFA
traders.

4. Conclusions
In this paper, we analyze the determinants on the FFA trading volume from a cross-market
perspective. We establish a theoretical model to characterize the determinants and their
impacts on the FFA trading volume in the market equilibrium. Then we use a two-step
model specification to empirically test our theoretical statements for the Capesize, Panamax
and Supramax sectors. The results indicate that the most reliable results consistent with our
theoretical statements are presented in the Capsize sector. Our empirical studies can supply
the traders in the FFA market a possible way to construct their hedging strategies: the
buyer’s optimal FFA procurement quantity is the expected spot demand multiplied by the
quantity premium, which is determined by the demand covariance term, the demand
riskiness term and the demand volatility term. In addition, our study indicates the impacts
of the spot demand volatility and the covariance between the spot demand and the spot rate
to the FFA trading activities. These impacts can also supply new insights to FFA traders.

Some possible extensions could be considered in future research. One could consider
adding some constraints, e.g. the budget constraint, for the procurement in the forward
freight market in the theoretical model, and investigate their impacts on the FFA trading
volume. This can be implemented by adding a constraint in the buyer’s optimization
problem. Moreover, cross-market linkages can be reflected from another angle: between
forward freight markets and the derivatives markets of the commodities carried by the dry
bulk vessels (Kavussanos et al., 2014). Therefore, one can seek other determinants of the
FFA trading volume from these derivative markets of the commodities. For instance,
the trading volumes and the volatilities of the derivative prices in the derivative markets of
the commodities can be included in our model to reveal their impacts on the FFA trading
activities.

Notes

1. Here, we isolate the hedging impacts of the FFA on its trading volume by our theoretical model.
In the empirical studies, we will add the impacts of the speculation or arbitrage of FFA in the
regression equations.

2. There are many empirical studies to demonstrate that the shipping demand and freight rate
follow the lognormal distributions, e.g. Berg-Andreassen (1997); Kawssanos and Nomikos (1999).

3. In equation (4) and equation (5), it does not matter what base is used in the log function. The base
can be the natural base e, or other bases. In the empirical studies, we use the natural log function.

4. Here, FFA prices are actually BFA (Baltic Forward Assessment) prices from the Baltic
Exchange.

5. According to (Alizadeh et al. 2015a), Thursday’s FFA prices are used to represent the weekly
prices to avoid the possible bias due to the weekend effects.

6. We use the sample provided by Stopford (2009, p.422, Table 11.2) to justify this statement. By
calculating the coefficients of variation (CVs), which equals to the standard deviation divided by
the mean of the maritime transport volumes for different dry bulk cargoes, we know that the CVs
of iron ore, coal, grain, agribulks, sugar, fertilizer, Metals and minerals, and steel and forest
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products are 0.32, 0.40, 0.17, 0.29, 0.21, 0.08,0.24 and 0.10, respectively. It can be easily found that
the iron ore and coal have higher demand volatilities than other dry bulk cargoes.

7. In Figure 5, the FFA trading volume percentage of the Capsize (or Panamax or Supramax) means
the percentage of the FFA trading volume of the Capsize (or Panamax or Supramax) sector to the
total FFA trading volume.
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Appendix A. Proof of the theoretical statements
Here we use the framework proposed by Secomandi and Kekre (2014) to make the proofs. It is
obvious that min q;Dð Þ ¼ q� q� Dð Þþ. Therefore, the buyer’s profit function can be expressed as
follows:

p ¼ E rqþ f � rð Þ q� Dð Þþ � Fq
� �

(10)

Then we can obtain the first order condition as follows:

@p=@q ¼ E rð Þ þ E f � 1 q� Dð Þ½ � � E r � 1 q� Dð Þ½ � � F ¼ 0 (11)

where 1 �ð Þ is the indicator function, i.e.:

1 q� Dð Þ ¼ q� D if q � D
0 if q < D

�

From the property of multivariate normal distribution, we know that:

E logrjlogDð Þ ¼ logMr � S2
r

2
þ rDrSDSr

S2
D

logD� logMD þ S2
D

2

	 

(12)

var logrjlogDð Þ ¼ 1� r 2
Dr

� �
S2
r (13)

E rjDð Þ ¼ exp E logrjlogDð Þ þ 1
2
var logrjlogDð Þ

� �

¼ Mr
D
MD

	 
rDrSr=SD

exp
rDrSDSr � r 2

DrS
2
r

2

	 

(14)

Therefore, we have:

E 1 q� Dð Þ½ � � E rjDð Þ ¼ MrMD
�rDrSr=SDexp

rDrSDSr � S2
r

2

	 

E DrDrSr=SD � 1 q� Dð Þ
� �

(15)

From Secomandi and Kekre (2014)’s Lemma 1, we know that:

E DrDrSr=SD �1 q�Dð Þ
� �

¼ exp
r 2
DrS

2
r�rDrSDSr

2

	 

MD

rDrSr=SDU

	 logq�logMDþS2
D=2�rDrSDSr

SD

 ! (16)
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Substituting equation (16) into equation (15), we have

E r � 1 q� Dð Þ½ � ¼ E 1 q� Dð Þ½ � � E rjDð Þ ¼ MrU
logq� logMD þ S2

D=2� rDrSDSr
SD

 !

(17)

Using the same logic, we obtain that:

E f � 1 q� Dð Þ½ � ¼ MfU
logq� logMD þ S2

D=2� rDf SDSf
SD

 !
(18)

Substituting equations (18) and (17) into equation (11), we can obtain equation (3).
Making the derivations directly based on equations (4) and (5), we can easily obtain:

@logq=@MD > 0;

@logq=@Mr > 0;

@logq=@Mf > 0;

@logq=@F < 0;

@logq=@ rDf SDSf
� �

< 0;

@logq=@ rDrSDSrð Þ < 0:

Moreover, @logq
@SD

¼ rDf SDSf�S2
D

SD
. If rDf SDSf > S2

D, i.e.Var Dð Þ < cov D; fð Þ, @logq=@SD > 0, otherwise,
@logq=@SD < 0.

The same logic can be applied to the case when considering the covariance between the demand
and the earning cov D; rð Þ.
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Appendix B. The estimates of the GARCHmodels to calculate the volatilities of the FFA
returns

Table AI.
The estimates of the
GARCH models to

calculate the
volatilities of the
FFA returns for

different dry bulk
sectors

Capesize Q1 Q2 Q3 Q4

C0 �0.00463 (�1.053) �0.0043 (�1.139) �0.0037 (�1.004) �0.010 (�1.556)
C1 0.276*** 3.990) 0.307*** (4.768) 0.327*** (4.857) 0.179** (2.558)
v 0.0009*** (2.804) 0.0012*** (4.343) 0.0005*** (4.246) 0.0078***(8.386)
a 0.184*** (3.055) 0.654*** (6.086) 0.191*** (3.962) 0.324*** (5.610)
b 0.668*** (8.004) 0.368*** (5.490) 0.692*** (14.650) �0.062 (�0.561)

Diagnostics
Adjusted R2 0.061 0.026 0.014 �0.038
Log-likelihood 389.53 378.10 406.262 296.04
DW Statistics 2.014 2.127 2.210 2.332
AIC �2.457 �2.361 �2.572 �1.878
SC �2.397 �2.302 �2.512 �1.817
ARCH(12) 0.512 (0.907) 0.499 (0.915) 0.409 (0.960) 0.072 (1.000)

Panamax
C0 �0.0034 (�1.371) �0.0031 (�1.006) �0.0043 (�1.777) 0.003 (0.518)
C1 0.185*** (3.356) 0.102 (1.593) 0.230*** (3.742) 0.044 (0.465)
v 0.0002** (2.081) 0.0001* (1.885) 0.0001** (2.516) 0.005*** (14.225)
a 0.243*** (3.716) 0.209*** (5.027) 0.201*** (4.257) 0.177** (2.784)
b 0.701*** (8.619) 0.806*** (27.55) 0.751*** (16.681) �0.059 (�1.434)

Diagnostics
Adjusted R2 0.030 0.010 0.006 �0.032
Log-likelihood 512.508 485.79 511.05 401.53
DW Statistics 1.986 1.982 2.151 2.472
AIC �3.243 �3.043 �3.244 �2.558
SC �3.183 �2.984 �3.184 �2.498
ARCH(12) 1.572 (0.099) 0.221 (0.997) 0.266 (0.994) 1.099 (0.361)

Supramax
C0 �0.0034 (�1.507) �0.0051** (�2.186) �0.004** (�1.916) �0.003 (�1.625)
C1 0.187*** (2.974) 0.087 (1.206) 0.214*** (3.252) 0.189 (26.440)
v 0.000*** (3.175) 0.000*** (2.703) 0.0002*** (3.03) 0.000 (5.433)
a 0.193*** (4.212) 0.080*** (3.904) 0.210*** (3.434) �0.039 (�9.863)
b 0.787*** (20.13) 0.891*** (37.543) 0.639*** (7.358) 1.013 (124.376)

Diagnostics
Adjusted R2 0.014 �0.0068 0.017 �0.009
Log-likelihood 598.51 579.43 591.43 628.91
DW Statistics 2.050 2.092 1.89 2.141
AIC �3.554 �3.450 �3.654 �3.736
SC �3.497 �3.393 �3.595 �3.679
ARCH(12) 1.198 (0.284) 0.068 (1.000) 1.187 (0.291) 1.594 (0.092)

Notes: ***, **and *mean statistically significant at 1%, 5% and 10%, respectively. The t-statistics is
reported in the parenthesis. LogL is the log-likelihood. AIC is the Akaike information criterion. SC is the
Schwarz criterion. DW statistics is the Durbin–Watson statistics. ARCH(12) is Engle’s F-test for ARCH
effects. Figures in the brackets under the ARCH(12) estimates indicate the significance levels.
RTt ¼ C0 þ C1 � RTt�1 þ « t , « t� 0; htð Þ, ht ¼ v þ a« 2

t�1 þ b ht�1
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