The leadership challenge of increasing productivity in the workplace without increasing burnout risk

John Whiteoak, Daniel Abell and Karen Becker
School of Business and Creative Industries, University of the Sunshine Coast, Sunshine Coast, Australia

Abstract

Purpose – This paper aims to examine the critical question of how to increase productivity without also increasing the burnout risk. A systems thinking framework was applied to explore individual perceptions of team dynamics and how they relate to morale, work–life balance (WLB) and hours worked.

Design/methodology/approach – Using an online survey, data from 1,222 Australian workers were analysed using hierarchical multiple regression and principal components analysis (PCA).

Findings – Self-reported productivity was found to be predicted by engagement whereas burnout and morale had minimal impact. Burnout risk was not related to hours worked but was reduced when WLB, quality work and trust is higher. Co-worker effort impacted morale and a factor labelled as team “sense of accomplishment” (SoA) was identified.

Research limitations/implications – The results of this research have limited generalisability to wider populations due to sampling methods, being conducted in the Australian context and respondents coming from a diverse range of occupations. The sample being skewed towards younger age groups and the acknowledged use of single-item measures may also restrict drawing broader conclusions from the results.

Originality/value – A socio-technical systems thinking model to diagnose the link between workplace burnout and productivity is applied. The approach involved understanding the importance of trust and how the connection between people and systems can influence morale.

Keywords Engagement, Burnout, Morale, Sense of accomplishment, Systems thinking, Hours worked, Trust

Paper type Research paper

Introduction

Acquiring and retaining talent has always been a key ingredient of organisational management. In Australia today attracting skilled workers is increasingly difficult with the unemployment rate at four percent, the lowest rate in 14 years (ABS, 2022). On the other hand, in Australia post-Covid challenges, inflation rates increasing and with cost-of-living pressures many Australians are also seeking increased take home pay. As such, workplaces are faced with a tough decision of how you respond to requests for increased pay but ensure staff are not exposed to increased risk of burnout through working additional hours to compensate for higher salaries.

Already Australians are working longer hours than the Organisation for Economic Development (OECD) average and are fifth highest in hours worked per capita (Productivity Commission, 2020). Despite this, compared with other OECD members, productivity in Australia is described as “middling” (Productivity Commission, 2020). Further, there are currently unprecedented outside pressures in many industries, and this aligned with national productivity concerns exacerbates the need for insights that support the best course of action to navigate these issues.

Data also suggests that work life balance (WLB) in Australia is in the bottom 20% of countries (positioned at 31/35) (OECD, 2018). According to Gallup (2017) Australians are some of the most disengaged employees in the world, with approximately 71% of workers
(combined with New Zealand data) described as not engaged in their work. Tziner et al. (2019) discovered that while organisations tend to refer to work hours as a measure of employee commitment and investment, overall low employee effort can indicate burnout. This may also be a symptom of change fatigue and as such more work hours may not result in better productivity. This situation presents a significant challenge for managers required to make decisions that enhance productivity and retain staff.

At a time of increasing competition and uncertainty, organisations that leverage their human capital through effective management practices are likely to be more resilient (Hooi, 2021). The people component of culture has been examined in relation to managing workplace stress (Abbas and Raja, 2018), and work satisfaction and burnout (Adarkwah et al., 2018). However, the role that systems play in influencing workplace dynamics and managerial decision making seems to have been less well understood and researched. This may be particularly important in understanding individual (people) and organisational (systems) factors that influence productivity. Hence, a need has emerged to examine the interplay between people and systems in Australian workplaces to further understand productivity and its interactions with other workplace dynamics.

This paper makes an important contribution to informed managerial decision making in this complex environment and responds to calls for further examination of the relationships between productivity and job design factors (Leineweber et al., 2021), burnout (Ong et al., 2021; Demerouti et al., 2021) and person-centred factors (Sandrin et al., 2021), such as employee morale, in this study. This paper reveals how morale, burnout and engagement interact with the critical workplace factor, productivity, by asking the question: “How can organisations improve productivity without increasing the burnout risk of workers?”

Theoretical framework and hypotheses
The socio-technical systems (STS) approach for developing organisational strategies has been widely applied (Coghlan and Shani, 2013; Murphy et al., 2018), and underpins this research. A STS model that includes the interplay of a people, systems and tools (PST) framework (Whiteoak, 2020) shown in Figure 1 is applied.

The PST framework suggests that having PST in accord creates an opportunity for positive synergistic or compounding non-linear outcomes. This paper looks specifically at systems and people and argues that the healthy interactions of these factors is crucial to enhanced productivity.

![Figure 1. The people, systems, tools (PST) framework](image-url)
Productivity

The PST framework suggests when elements in the model are managed well a positive zone of engagement develops that can influence productivity. Engaged employees are typically described as having a work-related state of mind that is characterised by vigour, dedication and absorption (Schaufeli and Bakker, 2004; Bakker et al., 2011) and it is argued that leaders should enhance engagement (Seijts and Crim, 2006) and the link between employee engagement and productivity has been recognised (e.g. Al Mehrzi and Singh, 2016; Hanaysha, 2016; Christian et al., 2011).

The PST framework proposes that ineffective management of the interaction between systems and people may negatively impact worker morale and engagement and contribute to burnout. Burnout has been broadly defined as a state of chronic exhaustion and is associated with reduced performance and reduced engagement (Maslach et al., 2001; Hills, 2018; Mealer et al., 2016). A recent study across 29 countries found that 87% of participants agreed that in a worker, occupational burnout is an exhaustion due to prolonged exposure to work-related problems (Guseva-Canu and Marca, 2021, p. 95). How burnout is conceptualised has also been discussed by Nerstad et al. (2019) who argued that burnout and engagement are distinct concepts and not conceptual opposites. They note that many authors recommend assessing burnout and engagement independently (Bakker et al., 2014; Cole et al., 2012). This is investigated in this study. Similarly, the unique contributions of morale on productivity are also explored. Engagement and morale are terms sometimes used interchangeably, but whilst there is overlap, Ivey et al. (2015) concluded that they are separate concepts. A clearer distinction between these concepts may provide for the enactment of more targeted tactical responses that can improve productivity and mitigate burnout. Therefore, in this study the first hypothesis is,

H1. Employee engagement, burnout risk and morale will each provide a significant and unique contribution to self-reported levels of productivity.

There is extensive literature available that addresses employee engagement. As such, this paper now focusses more closely on burnout risk and morale and attempts to understand factors that influence them independently. This study adds to the current literature by providing a deeper insight into the job design factors and group dynamics that may underpin and influence burnout risk and morale, respectively.

Burnout risk

In 2019, the World Health Organisation (WHO) recognised “burnout syndrome” as an official medical condition defined as a “syndrome resulting from chronic workplace stress that has not been successfully managed” (World Health Organisation, 2019). Research contends that a healthy WLB leads to enhanced organisational performance (Sirgy and Lee, 2018; Allen et al., 2000). Individuals with a positive perception of WLB are found to have higher job satisfaction (Brough et al., 2008) and better physical and psychological health (Sirgy and Lee, 2018). Linked to this, longer hours of work, often considered detrimental to WLB, are related to burnout risk (e.g. El-Ibiary et al., 2017; Hu et al., 2016; Liu and Cheng, 2018; Wu et al., 2018). Pressure caused by long and irregular working hours that can create high stress and work–family conflict is associated with burnout in construction workers (Wu et al., 2018). Higher hours per week has also been associated with a higher risk of emotional exhaustion (El-Ibiary et al., 2017) and Pencavel (2015) concluded that worker fatigue could occur based on hours worked are responsible for reduced productivity yields. Whiteoak (2020) suggests that when management drive production (quantity only) outcomes with insufficient concern for work quality a situation is created which may compromise morale and contribute to burnout risk. Ghadi et al. (2013) reported that transformational leadership and work engagement was found to be partially mediated by employees' perceptions of meaning in work. Employees
who experience their work as being focussed more on meaningful quality outcomes are therefore more likely to have reduced burnout risk. In this research, employee perceptions of a workplace focus on quantity over quality is explored in relation to burnout risk. The second hypothesis investigated is,

\[H2. \text{Job design factors such as WBL, work quantity/quality and hours worked will predict reduced burnout risk} \]

Morale

According to Britt et al. (2013, p. 95) morale is a positive construct that combines feelings of energy with feelings of enthusiasm for accomplishing salient tasks. Research by Weakliem and Frenkel (2006) explains that enhancing morale leads to productivity gains. Nur et al. (2021, p. 1) suggest that while morale “plays an important role in productivity and retention” that fostering morale can be challenging for managers.

Morale has been associated with group cohesion (Manning, 1991; Dion, 2000; Siebold, 2006) and group well-being (Peterson et al., 2008) and impacted by underlying team dynamics. Both employee–manager and employee–company relationships were also found to have a strong effect on employee morale (Nur et al., 2021). The efforts of one’s co-workers is associated with higher morale (Goo et al., 2019; Weakliem and Frenkel, 2006), and instrumental support from colleagues may alleviate the impact of work overload on strain, including burnout (Van der Doef and Maes, 1999).

Based on the classic research by Max Ringelmann (1913) many subsequent studies and articles (e.g. Simms and Nichols, 2014; Karau and Williams, 1993) have described the negative impacts of “social-loafing” or “free-riding” on the team. In contrast, the social exchange perspective explains that co-workers are willing to provide help when they have received assistance from a colleague previously (Deckop et al., 2003), or expect to in the future (Stamper and Van Dyne, 2001). This effort expended by one’s co-workers is likely to be morale boosting. Likewise, team–member exchange theory (Seers, 1989) suggests that team effectiveness is enhanced in the presence of high-quality working relationships within the team. Skaalvik and Skaalvik (2017) described positive and supporting relations with colleagues as a job-resource that is related to teacher well-being. This type of co-worker trust may also support morale.

In contrast to considering support and trust, a lack of involvement in decision-making, has been argued to contribute to lower morale and increase burnout risk amongst teachers (Whiteoak, 2020). Team involvement in decision making is a component of job crafting, which can lead to increased worker motivation (Bakker and Demerouti, 2017; Tims et al., 2012). An inability to make decisions as a group would be likely to be detrimental to morale. In summary, it is proposed that morale is related with co-worker effort, trust and making decisions as a group. The following hypothesis is proposed:

\[H3. \text{Co-worker effort, co-worker trust and co-workers who make decisions together will all add unique and significant contributions to the prediction of morale} \]

Method

Participants

A convenience sampling method (Bryman, 2016) was employed to collect data using an online anonymous survey targeting respondents who were employed or self-employed and working in Australia. The online survey instrument was designed to capture work experiences of participants across a wide range of jobs and professions. This was to allow insights into the nature of work in Australia. Snowballing recruitment strategies (Bryman, 2016) were then
used to expand the sample size. The inclusion criteria were informed consent and employment status. The data were analysed for unusual cases and reduced to include only those participants who reported working between 20 and 60 h per week. This reduced the sample size to 1,222 (from 1,526). The gender distribution of the sample and their related hours worked are presented in Table 1.

Table 1 shows that the sample included 61.6% were female and that 42.3% were aged between 20 and 29 years. Hours worked was assessed by a response to the question, "on average, how many hours per week are you working". These data were found to be normally distributed and indicated the on average participants worked 38.75 h per week (SD = 9.37). These data suggest that on average males in the sample work 2.95 h more per week than females. This range increased to 6.11 h in the 50 to 59 age range. There were 392 respondents who indicated working more than 40 h per week in the data set.

Measures

These items in the study were established via a pilot survey that was conducted as part of a university course project. The results of the pilot study (n = 184) substantiated the veracity of the measures. The subsequent measures included in this study were grounded in relevant literature that have been described in the preceding hypotheses. In addition, item to item and item to total correlations coefficients were found to be within the acceptable range. This established the value of each of the variable’s contribution. Further, the voluntary nature of the study dictated it was critical to reduce completion time. Consequently, several single-item measures were used. It is acknowledged that single-item measures can have implications for predictive validity (Diamantopoulos et al., 2012) and reliability (Wanous et al., 1997). However, Wanous et al. (1997, p. 247) note that exceptions can be made when “the construct being measured is sufficiently narrow or unambiguous to the respondent”. Other research (e.g. Meriläinen et al., 2019) suggested a single item measure of work performance was appropriate for both effectiveness and efficiency criteria. As such sufficient statistical rigour was applied to ensure the credibility of the data.

Engagement, productivity and morale

Participants were asked to estimate their productivity, engagement and levels of morale in their workplace using a seven-point scale ranging from 25% (very low) to 100% (very high). The items were: Please provide an estimate (%) of, “how engaged you are in your work”, “the workplace morale where you work” and “your usual level of productivity where you work”.

Burnout risk

Burnout risk was measured using three seven-point Likert items adapted from the Maslach Burnout Inventory (MBI) (Maslach et al., 1986). These were, “I usually feel really tired when

<table>
<thead>
<tr>
<th>Age range</th>
<th>Male</th>
<th>Work hours</th>
<th>N</th>
<th>Female</th>
<th>Work hours</th>
</tr>
</thead>
<tbody>
<tr>
<td><20</td>
<td>17</td>
<td>31.88 (8.54)</td>
<td>47</td>
<td>32.06 (8.12)</td>
<td></td>
</tr>
<tr>
<td>20–29</td>
<td>214</td>
<td>38.35 (8.83)</td>
<td>303</td>
<td>37.05 (8.85)</td>
<td></td>
</tr>
<tr>
<td>30–39</td>
<td>105</td>
<td>42.28 (8.23)</td>
<td>131</td>
<td>39.02 (9.54)</td>
<td></td>
</tr>
<tr>
<td>40–49</td>
<td>72</td>
<td>43.64 (7.74)</td>
<td>157</td>
<td>38.68 (9.96)</td>
<td></td>
</tr>
<tr>
<td>50–59</td>
<td>53</td>
<td>44.39 (9.37)</td>
<td>103</td>
<td>38.28 (8.86)</td>
<td></td>
</tr>
<tr>
<td>60–69</td>
<td>8</td>
<td>43.38 (8.18)</td>
<td>12</td>
<td>38.87 (12.92)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>469</td>
<td>40.57 (9.10)</td>
<td>753</td>
<td>37.62 (9.36)</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Hours worked per week by gender

Source(s): Authors work
facing another shift on the job”, “I feel emotionally drained from my work” and “I feel burned out from my work”. The Cronbach’s alpha showed excellent reliability at 0.84.

Work–life balance and quality work
Two seven-point Likert items calculate WLB and quality of work perceptions. These were, “we have the work life balance right at my workplace”, and “in my organisation emphasis is put on quantity more than on the quality of performance”.

Predictors of morale
Three items were used as predictors of morale. Each ranged from 1 (very strongly disagree) to 7 (very strongly agree). These were, “trust among co-workers in my workplace is less than optimal” (co-worker trust), “co-workers in my workplace often make decisions as a team” (co-worker decide) and “given their abilities co-workers in my workplace are doing the best they can” (co-worker effort). To assess co-variability a Cronbach’s alpha was generated. The alpha of 0.58 and inter-item covariances ranged from 0.053 to 1.13 suggesting the measures were not uni-dimensional (as confirmed in a subsequent principal component analysis) and this also supports analysing items individually.

Results
Table 2 presents the inter-correlations. The possible existence of multicollinearity was examined using the variance inflation factor (VIF). Marquardt (1980) argues that a VIF greater than 10 indicates the strong multicollinearity. VIF statistics (1.10 and 1.35) indicated limited multicollinearity.

Hypotheses testing
Hypothesis 1 was tested using hierarchal linear regression. Overall, there was statistical support for Hypothesis 1. First, engagement was entered as a predictor of productivity ($F(1, 1,220) = 318.48, p < 0.05$). The regression slope is not zero and for one unit increase in the measure of engagement, self-reported productivity increases by 4.50 (%). The $R^2 = 0.207$, indicates that 20.7% of the variance in productivity is explained by engagement.

The unique contribution of burnout risk as a predictor of productivity was then examined. Burnout risk was entered and was significant, $R = 0.171$, $R^2 = 0.029$, $F(1, 1,146) = 34.53$, $p < 0.05$. This provides additional borderline support for hypothesis 1. At step 2, morale as a
A hierarchical multiple regression analysis with burnout risk as the dependent variable and hours worked, quality of work and WLB as the independent variables was conducted to assess hypothesis 2.

Hours worked was entered in the first step and was a marginally significant predictor, $R^2 = 0.077$, $F(1, 1,206) = 7.15, p < 0.05$. The finding indicates that less than 1% of the variance in (perceived) burnout risk is explained by hours worked and provides little support for this element of Hypothesis 2.

At step 2, quality of work as a predictor with hours worked resulted in a significant improvement in prediction, $R^2 = 0.297$, $R^2_{change} = 0.082, F(2, 1,205) = 131.15, p < 0.05$. This result confirms hypothesis 2. At step 3, WLB with hours worked and quality of work resulted in a significant improvement, $R^2 = 0.523, R^2_{change} = 0.186$, supporting its presence in hypothesis 2. Hours worked was not found to provide any unique contribution to prediction with the inclusion of WLB in the model. The final model accounted for 27.2% of the variation in the dependent variable. The equation of prediction was,

$$\text{Burnout risk} = -0.392 \times \text{work life balance} + -0.190 \times \text{quality of work}$$
$$+ 0.007 \times \text{hours worked} + 4.834.$$

The conclusion drawn from hypothesis 2 is that hours worked has relatively little impact, in this sample, on burnout. Whereas WLB and quality of work contributes substantially enough to warrant future attention.

To test hypothesis 3, a multiple linear regression was performed with morale as the dependent variable. The independent variables in the model were, co-worker trust, co-workers decide as a team and co-worker effort. The multiple correlation coefficient ($r = 0.59$) was found to be significant $F(3, 1,218) = 215.78, p < 0.05$, with 35.0% of the variation in the dependent variable explained (adjusted $R^2 = 0.35$). The equation of prediction produced by this analysis describes the relationship as,

$$\text{Morale} = 0.332 \times \text{co-workers decide as a team}, + 0.228 \times \text{co-worker effort},$$
$$+ 0.141 \times \text{co-worker trust} + 41.297.$$

The results of the multiple regression confirm the hypothesis that each of the group variables added significantly to the prediction of morale.

Principal components analysis (PCA). Because of the contribution made by the variables measuring team dynamics and marginal statistical support for some hypotheses (e.g. the relationships between burnout-risk, hours worked and productivity) it was deemed appropriate to explore the underlying data structure using a principal component analysis (PCA).

Engagement and WLB were excluded due to communality. The remaining eight items loaded onto three independent factors. The three factors accounted for 60.43% of the variance. Table 3 presents the resulting factor matrix structure using a varimax rotation.
model. The statistical parameters suggest the model was acceptable (KMO = 0.76 and Bartlett’s Chi-Square (28) = 1618.31, \(p \leq 0.00 \)).

Results of PCA

Factor 1 comprised of co-worker effort, co-worker decide, morale and productivity. The label chosen for this factor was “Team Sense of Accomplishment”. It was considered that the dynamics of group effort and deciding as a team combined with a strong nuance of morale and being productive creates an overall sense of accomplishment (SoA) for a group. The unique percentage of variance explained by this factor is 33.20% suggesting it was dominant in the results.

Factor 2 consisted of quantity over quality of work and include burnout risk and co-worker trust. It is important to note that co-worker trust is more closely related to quality of work and reducing burnout risk and less related to the variables in the SoA factor and hours worked. This factor seems to align with the literature and was labelled “Burnout risk”. The percentage of variance explained by this factor was 14.33%. The third factor included a single variable and led to the self-explanatory label of “Hours worked” (12.89%).

Discussion

The results showed that engagement, as expected, was a viable predictor of self-reported productivity. This finding supports what numerous other researchers have previously discovered (Bakker and Bal, 2010; Christian et al., 2011) and helps to confirm the veracity of this data set. WLB was reaffirmed as a buffer to burnout, with data indicating that work hours in this study was not a driver of burnout risk. This finding is comparable to results from recent research disseminated by the Gallup organisation and reported by Wiggert (2020) who claims that reducing work hours will not be likely to solve employee burnout issues.

The relationship between burnout risk and self-reported productivity was, although significant, negligible. One explanation comes from JD–R theory. This theory models the link between workplace strains and job performance and suggests that resources (job and personal) may mitigate the effects of burnout risk created by job demands (Bakker and Demerouti, 2017). Hence, workers who are at risk of burnout may have appropriate resources to compensate and therefore maintain their perception of productivity even in the face of burnout risk. The important finding that results from this research shows that even while an employee may be at burnout risk, productivity levels of the worker may not reveal this and therefore can veil individuals who are at risk of burnout.

Expanding the JD–R model into an STS framework and applying the PST model (Figure 1) highlights additional elements that contribute to the culture of the workplace. This theoretical model posits that systems issues may undermine the resource pathways that are potentially

<table>
<thead>
<tr>
<th>Variable</th>
<th>Component 1</th>
<th>Component 2</th>
<th>Component 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-worker effort</td>
<td>0.801</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co-workers decide</td>
<td>0.794</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morale</td>
<td>0.719</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Productivity</td>
<td>0.563</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality work</td>
<td></td>
<td>0.786</td>
<td></td>
</tr>
<tr>
<td>Burnout risk</td>
<td></td>
<td>-0.655</td>
<td></td>
</tr>
<tr>
<td>Co-worker trust</td>
<td></td>
<td></td>
<td>0.617</td>
</tr>
<tr>
<td>Hours worked</td>
<td></td>
<td></td>
<td>0.967</td>
</tr>
</tbody>
</table>

Source(s): Authors work

<table>
<thead>
<tr>
<th>Component 1</th>
<th>Component 2</th>
<th>Component 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Factors identified in PCA

Increase productivity without burnout risk

267
buffering against burnout risk. For example, when the culture of an organisation allows individuals to be blamed for system breakdowns this creates a critical incident experience for a worker that can initiate a burnout tipping point or trajectory (Whiteoak, 2020). In this case, burnout risk and productivity may not be explicitly related (as was found here). Further, sometimes, being at risk of burnout may not be obvious in the mind of the worker until a critical incident occurs. Therefore, in the instance of systems failures, if the individual within the workplace or a small group of workers feel a sense of blame, low morale may result and trigger burnout.

The findings indicate that more positive perceptions of the quality of work experience reduce burnout risk. The analysis from The Gallup Organisation also suggests that how people experience their workload has a stronger influence on burnout than the hours worked. Organisations with strong systems and well-designed management programmes are likely to experience performance improvements and improved employee engagement (Hooi, 2021). Wang and Chen (2022) also found that improved managerial competencies (such as listening skills) can help reduce role stress and mitigate the risk of burnout, while Tan et al. (2019) found that meaningful work also reduces burnout risk. However, employees experiencing challenging work impacted by poor systems are more prone to burnout (Abbas and Raja, 2018). Leadership practices that enable workers to associate their efforts with a work experience of quality over quantity will be likely to reduce the incidence of emotional exhaustion and fatigue (Abbas and Raja, 2018), and consequently, burnout risk.

Experiencing a SoA in a team was not included as a theoretical construct at the outset but is a serendipitous yet important finding of this study. The factor includes the presence of morale and productivity along with group effort and group decision making and presents many management implications. For example, Bakker and Demerouti (2017) described the motivational potential of allowing employees to take a bottom-up approach and use job-crafting (Wrzesniewski and Dutton, 2001) to optimise their working environment. Okpozo et al. (2017) showed that perceived supervisor support was indirectly related to personal accomplishment through self-efficacy. Thus, leaders who can support a bottom-up approach may encourage higher levels of self-efficacy that is connected to a quality of experience in work. This may lead to a gain spiral which becomes Team SoA and impacts group efficacy. Given the established link between engagement and productivity identifying Team SoA as an antecedent may also have important implications.

The findings point to a relatively weak prediction of morale on productivity. This may have been a result of the diversity of occupations represented in the data. An abundance of literature considers morale to be critical in professions such as the military (Britt and Dickinson, 2006), teaching (Weiss, 1999) and nursing (Callaghan, 2003). However, in occupations that are less team dependent morale may be less critical to workplace productivity outcomes. The results also suggested that morale is boosted predominantly by co-worker effort. Co-workers deciding together also featured. Co-worker trust was more strongly linked with reduced burnout risk than morale. Thus, a group may have high morale even without high trust amongst members. While high quality relationships are likely to enhance trust and autonomy at work (Caesens et al., 2020) reduce stress and conflict and improve workplace culture (Fall, 2015), this study has found that a more complex and nuanced relationship exists between morale, trust and productivity and this requires further exploration. In this case, it is likely interpersonal trust can buffer burnout risk whereas task-level trust and accountability, through co-worker effort, may be more important for morale. This is also an opportunity for additional research.

Conclusion
The findings suggest that a workplace culture where management preferences are focussed heavily on quantity and productivity will struggle to build morale and engagement. This emphasises that managers need to support small teams and enable job crafting where Team
SoA is a key objective. The paper suggests that Team SoA may positively influence productivity while tempering the impact of hours worked on burnout risk. In other words, when Team SoA is present, people may be able to extend their work hours. That is, Team SoA becomes an objective, and the tasks provide a vehicle for experiencing more quality time at work. However, this would need to be explored beyond an approximately 55-h threshold (e.g. Haar, 2021).

To be effective leaders should support an environment that sustains productivity and challenges staff to experience a SoA (especially as a team). In doing so, the centre of the strategic lens should be directed at building higher levels of engagement by leveraging human capital and building proficient and support oriented systems. When successful, this will create a belief that management genuinely cares about worker welfare and together this can create higher productivity while avoiding burnout.

Finally, there are several limitations of this research that require acknowledgement to ensure that the paper is reported in a proper context. The data used for the analysis were collected using a snow-ball sampling technique based on Australian workers limiting generalisability. Future international comparisons could reinforce and potentially highlight differences. There was a wide diversity of occupations included in the sample and this may have influenced some findings. Consequently, a more industry focussed approach could support broader conclusions of the result. An outcome of the data collection process was the sample skewed towards younger age groups. Further analysis with more mature workers to appreciate the generalisability of the results may be beneficial. Lastly, the assessment of some constructs using single-item measures could be strengthened through application of multiple items measures.

References

OECD (2018), *OECD Economic Surveys Australia*, Economic and Development Review Committee (EDRC) of the OECD.

Corresponding author
John Whiteoak can be contacted at: whiteoak@usc.edu.au