Emerald logo
Advanced search

A new classification strategy for human activity recognition using cost sensitive support vector machines for imbalanced data

Bilal M’hamed Abidine (Faculty of Electronics and Computer Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria)
Belkacem Fergani (Faculty of Electronics and Computer Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria)
Mourad Oussalah (School of Electronics, Electrical and Computer Engineering, University of Birmingham, Birmingham, UK)
Lamya Fergani (Faculty of Electronics and Computer Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria)

Kybernetes

ISSN: 0368-492X

Publication date: 26 August 2014

Abstract

Purpose

The task of identifying activity classes from sensor information in smart home is very challenging because of the imbalanced nature of such data set where some activities occur more frequently than others. Typically probabilistic models such as Hidden Markov Model (HMM) and Conditional Random Fields (CRF) are known as commonly employed for such purpose. The paper aims to discuss these issues.

Design/methodology/approach

In this work, the authors propose a robust strategy combining the Synthetic Minority Over-sampling Technique (SMOTE) with Cost Sensitive Support Vector Machines (CS-SVM) with an adaptive tuning of cost parameter in order to handle imbalanced data problem.

Findings

The results have demonstrated the usefulness of the approach through comparison with state of art of approaches including HMM, CRF, the traditional C-Support vector machines (C-SVM) and the Cost-Sensitive-SVM (CS-SVM) for classifying the activities using binary and ubiquitous sensors.

Originality/value

Performance metrics in the experiment/simulation include Accuracy, Precision/Recall and F measure.

Keywords

  • Artificial intelligence
  • Classification
  • Neural nets
  • Markov processes

Citation

M’hamed Abidine, B., Fergani, B., Oussalah, M. and Fergani, L. (2014), "A new classification strategy for human activity recognition using cost sensitive support vector machines for imbalanced data", Kybernetes, Vol. 43 No. 8, pp. 1150-1164. https://doi.org/10.1108/K-07-2014-0138

Download as .RIS

Publisher

:

Emerald Group Publishing Limited

Copyright © 2014, Emerald Group Publishing Limited

Please note you might not have access to this content

You may be able to access this content by login via Shibboleth, Open Athens or with your Emerald account.
Login
To rent this content from Deepdyve, please click the button.
Rent from Deepdyve
If you would like to contact us about accessing this content, click the button and fill out the form.
Contact us
Emerald Publishing
  • Opens in new window
  • Opens in new window
  • Opens in new window
  • Opens in new window
© 2019 Emerald Publishing Limited

Services

  • Authors Opens in new window
  • Editors Opens in new window
  • Librarians Opens in new window
  • Researchers Opens in new window
  • Reviewers Opens in new window

About

  • About Emerald Opens in new window
  • Working for Emerald Opens in new window
  • Contact us Opens in new window
  • Publication Sitemap

Policies and information

  • Legal Opens in new window
  • Editorial policy Opens in new window & originality guidelines Opens in new window
  • Site policies
  • Modern Slavery Act Opens in new window

We’re listening — tell us what you think

  • Something didn’t work…

    Report bugs here

  • All feedback is valuable

    Please share your general feedback

  • Member of Emerald’s Library Advisory Network?

    You can start or join in a discussion here.
    If you’d like to know more about The Network, please email us

Join us on our journey

  • Platform update page

    Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

  • Frequently Asked Questions

    Your questions answered here