To read this content please select one of the options below:

Predicting maintenance work hours in maintenance planning

Waqas Khalid (Department of Mechanical Engineering, Technical University of Denmark, Lyngby, Denmark)
Simon Holst Albrechtsen (Technical University of Denmark, Lyngby, Denmark)
Kristoffer Vandrup Sigsgaard (Technical University of Denmark, Lyngby, Denmark)
Niels Henrik Mortensen (Technical University of Denmark, Lyngby, Denmark)
Kasper Barslund Hansen (Technical University of Denmark, Lyngby, Denmark)
Iman Soleymani (Technical University of Denmark, Lyngby, Denmark)

Journal of Quality in Maintenance Engineering

ISSN: 1355-2511

Article publication date: 1 July 2020

Issue publication date: 27 April 2021




Current industry practices illustrate there is no standard method to estimate the number of hours worked on maintenance activities; instead, industry experts use experience to guess maintenance work hours. There is also a gap in the research literature on maintenance work hour estimation. This paper investigates the use of machine-learning algorithms to predict maintenance work hours and proposes a method that utilizes historical preventive maintenance order data to predict maintenance work hours.


The paper uses the design research methodology utilizing a case study to validate the proposed method.


The case study analysis confirms that the proposed method is applicable and has the potential to significantly improve work hour prediction accuracy, especially for medium- and long-term work orders. Moreover, the study finds that this method is more accurate and more efficient than conducting estimations based on experience.

Practical implications

The study has major implications for industrial applications. Maintenance-intensive industries such as oil and gas and chemical industries spend a huge portion of their operational expenditures (OPEX) on maintenance. This research will enable them to accurately predict work hour requirements that will help them to avoid unwanted downtime and costs and improve production planning and scheduling.


The proposed method provides new insights into maintenance theory and possesses a huge potential to improve the current maintenance planning practices in the industry.



The authors acknowledge the funding received from the Centre for Oil and Gas – DTU/Danish Hydrocarbon Research and Technology Centre (DHRTC). Moreover, the authors acknowledge the efforts of Julia Krogh Agergaard in reviewing and editing the article.


Khalid, W., Albrechtsen, S.H., Sigsgaard, K.V., Mortensen, N.H., Hansen, K.B. and Soleymani, I. (2021), "Predicting maintenance work hours in maintenance planning", Journal of Quality in Maintenance Engineering, Vol. 27 No. 2, pp. 366-384.



Emerald Publishing Limited

Copyright © 2020, Emerald Publishing Limited

Related articles