
Sharing large data collections using
data services in cloud environment

Qi Ji, Yuanming Zhang and Gang Xiao
College of Computer Science and Technology, Zhejiang University of Technology,

Hangzhou, China

Hongfang Zhou
Zhejiang Xizi Fuward Electric Motor Corporation, Hangzhou, China, and

Zheng Lin
Zhejiang Academy of Equipment Science, Hangzhou, China

Abstract

Purpose – Data service (DS) is a special software service that enables data access in cloud environment and
provides a unified data model for cross-origination data integration and data sharing. The purpose of the work
is to automatically compose DSs and quickly generate data view to satisfy users’ various data
requirements (DRs).
Design/methodology/approach – The paper proposes an automatic DS composition and view generation
approach. DSs are organized into DS dependence graph (DSDG) based on their inherent dependences, and DSs
can be automatically composed using the DSDG according to user’s DRs. Then, data view will be generated by
interpreting the composed DS.
Findings – Experimental results with real cross-origination data sets show the proposed approaches have
high efficiency and good quality for DS composition and view generation.
Originality/value – The authors propose a DS composition algorithm and a data view generation algorithm
according to users’ DRs.

Keywords Data service, Data service composition, Data view, Cloud computing

Paper type Research paper

1. Introduction
With the wide and deep development of information technology over the past ten years, a
large number of data sets are rapidly generated in different organizations. These data sets
comprise multiple modalities with diverse representations and distributions, while requiring
interactions among one another. Given the rate at which the data are produced, allowing the
data to be accessed without geographical limitations will eliminate several bottlenecks in
data-oriented innovations and will be especially valuable for further processing, such as
big data analysis and mining.

Service computing provides a flexible computing architecture to support freely accessible
abundant resources deployed on the web and has emerged as one important promising
research area. Not only are various functions of software encapsulated into the services,
named the web service, but diverse data produced from the software are also encapsulated
into services, called data service. Data service (DS) shields heterogeneous data through a set

JIMSE
3,1

48

©Qi Ji, Yuanming Zhang, Gang Xiao, Hongfang Zhou and Zheng Lin. Published in Journal of Intelligent
Manufacturing and Special Equipment. Published by Emerald Publishing Limited. This article is
published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce,
distribute, translate and create derivative works of this article (for both commercial and noncommercial
purposes), subject to full attribution to the original publication and authors. The full terms of this licence
may be seen at http://creativecommons.org/licences/by/4.0/legalcode

Funding: The work is being supported by the National Natural Science Foundation of China under
Grant NO. 61976193.

The current issue and full text archive of this journal is available on Emerald Insight at:

https://www.emerald.com/insight/2633-6596.htm

Received 20 January 2022
Revised 6 March 2022
Accepted 6 March 2022

Journal of Intelligent
Manufacturing and Special
Equipment
Vol. 3 No. 1, 2022
pp. 48-66
Emerald Publishing Limited
e-ISSN: 2633-660X
p-ISSN: 2633-6596
DOI 10.1108/JIMSE-01-2022-0003

http://creativecommons.org/licences/by/4.0/legalcode
https://doi.org/10.1108/JIMSE-01-2022-0003

of access interfaces and provides a unifiedmodel for data integration and data sharing. In this
case, data can be provided on the web regardless of geography. By composing DSs and
presenting them as data composition views, the cross-organization data integration and data
sharing can be effectively implemented.

There are already many works focused on DS encapsulation (Carey et al., 2008; Yu et al.,
2017), DS access (Wang et al., 2017), DS-based mining (Zorrilla and Garc�ıa-Saiz, 2013), DS
composition (Malki et al., 2014), data view generation (Xie and Xiao, 2014) and other aspects
(Zhang et al., 2013). With the enormous explosion of DSs in recent years, an important issue is
how to compose DS and generate DS view to satisfy according to users’ various data
requirements (DRs). Existing approaches and tools, such as Damia (Altinel et al., 2007) and
iViewer (Han et al., 2013), present a visualization interface tomanually generate the data view.
These approaches may be effective for a small quantity of DSs; however, as the quantity of
DSs grows, it becomes too inefficient for users to generate their desired data view.

To handle these problems, this paper proposes a novel automatic DS composition view
generation approach. The approach constructs a data service dependence graph (DSDG)
according to the inherent dependences among DSs. It can automatically compose DSs using
the DSDG according to user’s DRs and then automatically generate data view. The main
contributions of this paper are as follows:

(1) We build a DSDG based on the inherent dependences among DSs. This graph
describes the whole relations of DSs.

(2) We give a DS composition algorithm based on the DSDG. This algorithm can
automatically compose DSs according to users’ DRs.

(3) We propose a data view generation algorithm and define a set of basic operations
including selection, join, projection and set operations to generate data view.

(4) We develop a DS composition view generation prototype system, named DSViewer.
We evaluate this system with real data sets and evaluated in detail, and demonstrate
the system can automatically compose DS and efficiently generate DS view.

The rest of the paper is organized as follows: Section 2 gives the related work on DSs.
Section 3 models the relationship between DSs. Section 4 gives a DS composition algorithm.
Section 5 shows theDS view generation algorithm. Section 6 presents the DS view system and
evaluates the key algorithms in detail, and finally, Section 7 concludes this paper.

2. Related work
DS provides a new effective approach to integrate and share heterogeneous data accessed in
cloud environment. Currently, DS has become a hot spot in the field of service computing,
especially in current big data era.

Early researches concentrate on DS modeling, DS access and DS applications. Carey et al.
(2008) verified that DS cannot only directly access data source but can also integrate into the
service-oriented service (SOA) through a standard interface. This technique does not rely on
existing applications and can access cross-platform data resources. The technique also
makes up the shortcomings of traditional SOA in data access. Yu et al. (2017) proposed a
framework that discovers semantic links in printed forms while generating DSs for easy data
management and rapid data sharing in enterprise systems. Xu et al. (2018) designed a
dynamic DS publishing engine system to process the invocation requests of service. The
engine with Restful architecture addresses the problems of data model heterogeneity, data
extraction and data synthesis. Badidi and Routaib (2018) introduced a data provisioning
framework to help data consumers find high-quality IoT (Internet of Things) data. The
framework is based on the data as a service (DaaS) cloud delivery model. It can evaluate the

Sharing large
data collections

49

provision of latent DaaS providers based on the needs of data consumers. Silva et al. (2018)
designed a Web Crawler in combination with Middleware for DaaS and SaaS (MI-DAS) to
offer a solution for interoperating software as a service (SaaS) and DaaS in the case of data
deliver. Li and Zhang (2021) proposed a server-side solution based on FTP protocol to solve
the problem that how to provide simple data transmission service in distributed file system.
The solution named SPDScheme (Server Protocol Data Scheme) includes an independent
service SPDServer based on FTP protocol between the user and distributed file system to
ensure high concurrency and scalability of services. Immonen et al. (2018) outlined the kinds
of knowledge and services which are required for validating open data in DS ecosystems.
Yunkon and Eui-Nam (2017) proposed a reference model to guarantee DS reliability
satisfying various users’ requirements. The model makes user obtain maximum data volume
in limited time.

In recent years, DS has been utilized in cloud computing. Vieira et al. (2021) developed the
data join system to solve the problem of integrating data from different cloud services. This
model is described through the specification model and incorporated into the middleware as
a proof of concept. Goga et al. (2018) outlined deployment methods of virtual machines and
their applicability to DaaS model in clouds especially virtual machines migration.
Psomakelis et al. (2020) designed architecture for a DaaS marketplace hosted in a cloud
environment. The architecture includes a storage management engine, a monitoring
component and a parsing engine and evaluates the performance and efficiency of
applications by strictly regulated data exchange process. Plebani et al. (2018) gave a goal-
based modeling approach to achieve effective data movements in fog environments. In fog
environments, data is generated at the edge of the network, processed on the cloud and
consumed at customer sites. The approach can effectively handle frequent data movement
requests. Romdhani et al. (2019) proposed a classification scheme for current trust solutions
insisting in open issues in cloud environments. The method gives a general idea of using
Service Level Agreement (SLA) to improve multi-cloud data provisioning. Xi et al. (2018)
designed a new type of data flow named encryption flow to describe dependencies among
different encrypted data objects acrossmultiple services and gives a secure information flow
verification theorem.

Some works have been done on DS composition and data view generation. Zhang et al.
(2018) proposed a DSDG to automatically compose DSs and generate data views. According
to the internal data dependencies, DSs can be converted to DSDG. The visual data view can
be got from searching and integrating DSDG. Wang et al. (2018) designed a continuous DS
model and a continuous DS composition algorithm in answer to queries across data streams.
The model realizes the access and sharing of data streams through DS. Chen et al. (2017)
proposed a DS composition sequence generation approach for ad-hoc data query problems.
The method on the basis of keywords input by users can find the relevant DSs and generate
DS composition sequence as the output. Gu et al. (2018) gave a Web service composition
discovery method to find proper DSs and implement a Web service composition that can
realize complex and characteristic functions on the service data network. Huo and Zhang
(2020) designed a nonlinear service composition method based on the Skyline operator. The
method is to quickly find the service composition to solve the problem, and Skyline operator
contributes to reducing redundant services. Dara and Emadi (2021) proposed a method to
improve the data-driven composition of web services by enriching tags based on tags
semantic. The method can provide automatic service composition and automatically search
the service compositions for a given query. Liu et al. (2019) proposed a data flow control
approach based on dependency analysis for ensuring information flow’s security in cloud
composite service. Cai et al. (2019) designed a service composition and optimization model to
optimize knowledge service composition under cloud manufacturing. Jia and Wang (2020)
introduced a process construction approach for data-oriented users to directly operate on

JIMSE
3,1

50

data views to build a stream service composition process. Faieq et al. (2019) proposed a
recommendation-based service composition system targeting smart environments.
The system can capture the situation of the users to select appropriate service models to
meet their needs. Badidi et al. (2019) introduced an integrated framework for enhancing
personalized mobile cloud-services. The framework is based on a composition approach to
solve the personalization in mobile cloud-service provisioning. Sellami et al. (2020) proposed
an elastic composition algorithm for composing multi-tenant cloud services and performing
their elasticity through the proposed service pattern.

Some works have also been performed for data view update and optimization.
Zhang et al. (2013) proposed a dynamic update method for nested views based on DSs.
This approach uses pointers to create references to tuples in nested views; it uses the
update log to record the DS and improve the data freshness of nested views. Zhang et
al. (2020) proposed a model based on incremental log data combined view location
update to update the data composite view in real time at the minimum cost when the
data changes.

Compared with previous works, our proposed approach can organize DSs into a
dependence graph by using inherent data dependences. This dependence graph provides a
foundation to automatically compose DS according to uses’ various requirements. And then,
a data view can be generated by interpreting the composed result. It provides a more flexible
approach for users to utilize DS in cloud environment.

3. Data service dependence graph construction
Weuse real data sets to illustrate the DS composition and data view generation. The data sets
are extracted fromdifferent elevator enterprise departments including design data, sales data
and maintenance data. For simplicity, Table 1 gives two only two data sets. One is extracted
from design department and another is extracted from maintenance department. This table
shows the data structure and their attributes. Generally, an attribute is the abstract
characteristic description of an object, and data are the specific values of an attribute. The
data dependence is the inherent constraint among data.

Figure 1 shows the attribute dependence graph constructed according to the inner-data
dependence of the attributes in Table 1. Each node of the graph represents an attribute, and
each arrow of the graph represents dependence between two nodes. For example, the
attributes b, c and d are dependent on the attribute a, and the attribute a is interdependent on
the attribute a’.

Data source Table name Attributes

Design depart. elevator_info a; b; c; d
client_info e; f; g; h
order_info i; a0 ; e’; j

Maintenance depart. elevator_info k; l; m; n
record_info o; p; q; r
component_info k0 ; o’; s; t

(1) a: Elevator no b: Elevator model c: Elevator specifications d: Elevator interior
(2) e: Client no f: Client name g: Client address h: Client contact
(3) i: Registration no a0 : Elevator no e0 : Client no j: Elevator price
(4) k: Registration no l: Floor number m: Building name n: Elevator address
(5) o: Maintenance id p: Elevator fault q: Repair time r: Maintenance time
(6) k’: Registration no o0 : Maintenance id s: Maintenance parts t: Maintenance price

Table 1.
Data structures

extracted from two
elevator enterprise

data sets

Sharing large
data collections

51

Actually, DSs are obtained from encapsulating a set of attributes. If the encapsulated
attributes cannot be further subdivided, the corresponding DS is an atomic data service
(ADS). We define the formal definition as follows:

Definition 1. Atomic data service (ADS).An accessible and semantically nondividable DS
is called an atomic data service. Formally, an ADS is a tuple.
ADS 5 (ID, Name, Fields, Description, Inputs, Outputs, Operations,
Publisher), where:

(1) ID represents the identification of the ADS.

(2) Name represents the name of the ADS.

(3) Fields represent the encapsulated attributes of the ADS.

(4) Description represents the semantic information of the ADS.

(5) Inputs show the multiple input parameters of the ADS.

(6) Outputs show the execution result of the ADS.

(7) Operations give the possible operations to the ADS.

(8) Publisher shows the source of the ADS.

According to the attribute dependence graph, we can extract the ADSs. Table 2 shows the
extraction results, which lists all the ADSs extracted from Figure 1. For example, the ADS1
encapsulates the attribute a, and accessing ADS1 will return all elevator numbers. Since the
ADSs are obtained from the encapsulating attributes, the inherent data dependencies
between attributes can be directlymapped onto the dependencies betweenDSs.We define the
DSDG as follows.

Definition 2. Data service dependence graph (DSDG). The DSDG is an extended, directed
graph that describes the dependencies between ADSs and can be defined as
a tuple.
DSDG 5 (DS, E), where

(1) DS 5 {ADS1, ADS2, . . . ADSn}, in which the ADSi is an ADS.

(2) E5 {e1, e2, . . . em}, in which ei5A→ ADSj represents that the ADSj is dependent on
the A (A⊆DS).

The DSDG of the DSs in Table 2 is given in Figure 2. It clearly shows the global logical
structure of the ADSs and provides a foundation for the DS composition.

e'

f

g

b

c

d

j

ih

p

q

r

o' k'

s

t

l

m

n

a'

o

e a

kFigure 1.
Attribute
dependence graph

JIMSE
3,1

52

4. Data service composition
The ADS encapsulates the attributes of the data and can be accessed through the public
interfaces on the web. However, a single ADS only provides simple data and cannot satisfy

ID Name Fields Description Input Output Operation Publisher

01 ADS1 {a} Query elevator
no

Elevator no Elevator no Get Design
depart.

02 ADS2 {a, b} Query elevator
no, elevator
model

Elevator no or
elevator model

Elevator no
and elevator
model

Get Design
depart.

03 ADS3 {a, c} Query elevator
no, elevator
specifications

Elevator no or
elevator
specifications

Elevator no
and elevator
specifications

Get Design
depart.

04 ADS4 {a, d} Query elevator
no, elevator
interior

Elevator no or
elevator
interior

Elevator no
and elevator
interior

Get Design
depart.

05 ADS5 {e} Query client no Client no Client no Get Design
depart.

06 ADS6 {e, f} Query client no,
client name

Client no or
client name

Client no and
client name

Get Design
depart.

07 ADS7 {e, g} Query client no,
client address

Client no or
client address

Client no and
client address

Get Design
depart.

08 ADS8 {e, h} Query client no,
client contact

Query client no
or client
contact

Query client no
and client
contact

Get Design
depart.

09 ADS9 {i, a0} Query
registration no,
elevator no

Registration no
or elevator no

Registration no
and elevator no

Get Design
depart.

10 ADS10 {i, e0} Query
registration no,
client no

Registration no
or client no

Registration no
and client no

Get Design
depart.

. .
24 ADS24 {k, o,

t}
Query
registration no,
maintenance id,
maintenance
parts,
maintenance
price

Registration
no,
maintenance id
or maintenance
price

Registration
no,
maintenance id
and
maintenance
price

Get Maintenance
depart.

ADS7

ADS8

ADS5 ADS1 ADS3

ADS11ADS6

ADS12

ADS2

ADS4

ADS19

ADS20

ADS17 ADS13 ADS15

ADS23ADS18

ADS24

ADS14

ADS16

ADS9

ADS21

ADS10

ADS22

Table 2.
Data structures

extracted from elevator
enterprise database

Figure 2.
Data service

dependence graph

Sharing large
data collections

53

complex demands of users in most situations. It is necessary to compose multiple ADSs
according to users’ DRs. We first give a formal definition of the DRs to facilitate the DS
composition process.

Definition 3. Data requirements (DRs). DRs show the demands of users on the data set.
Formally, it can be defined as a tuple.
DR 5 (Fields, Conditions, Operations), where

(1) Fields are the desired attributes.

(2) Conditions5 {<Fieldi, Valuei>j Fieldi ∈ Fields, Valuei is a constant}, which represent
the data restrictions.

(3) Operations 5 {GET, UPDATE, DELETE}.
For example, if a user wants to query the elevator specifications of HZDS, the DR can
be defined as follows.
DR 5 ({Client name, Elevator specification}, {< Client name, “HZDS”>}, <get>).
The DS composition aims to generate a new complex DS by composing multiple
ADSs according to the DR. The composite DS is defined as follows.

Definition 4. Composite data service (CDS). CDS is a combination of multiple atomic DSs
and can be independently accessed on the web. Formally, CDS is a tuple.
CDS5 (ID,Name, Sub-DSDG,Description, Inputs,Outputs,Operations),where

(1) ID represents the identification of the CDS.

(2) Name represents the name of the CDS.

(3) Sub-DSDG is a sub graph of the DSDG.

(4) Description is the semantic information of the CDS.

(5) Inputs are the multiple input parameters of the CDS.

(6) Outputs show the execution result of the CDS.

(7) Operations are the executable operations including get, update and delete.

We propose an automatic DSs composition algorithm, shown as Algorithm 1. The inputs are
the DSDG and theDR, and the output is the CDS. This algorithmwill generate a CDS based on
the DSDG according to user’s DR. The algorithm selects the field-related ADSs in the fields
of the DR and takes the first as the starting ADS. Then, it accesses these ADSs in the DSDG
with the breadth-first search strategy and records the prior ADS of the visited ADS until all
the fields of the DR are included in the visited queue. A complete access path between the
starting ADS and the other ADSs are stored. The ADSs that exist in the complete access
paths will be composed into one CDS.

If there are more than one complete access path to these ADSs, there may exist more than
one composition result. It is essential to select an optimal CDS from the possible composition
results. Since the number of ADSs and the number of attributes in the CDS affect the
execution performance of the data view generation, the optimal CDS should have the
minimum number of ADSs and attributes. In the algorithm, the DSDG is an unweighted
graph; therefore, the breadth-first search strategy can take the path that contains the
minimum number ADSs and attributes to generate the optimal CDS. Our later experiments
also show that the algorithm can output the optimal composition result.

In addition, the algorithm assumes that all the nodes in the DSDG are connected. If the
graph is unconnected, the algorithm will traverse all the subgraphs of the DSDG.

JIMSE
3,1

54

It is assumed that r is the field number ofDRs,n is theADSnumber of theDSDGand e is the
edge number of DSDG. The time complexity of lines 1 to 5 isO(n), and the time complexity of
lines 6 to 33 is O(n þ e). The overall time complexity of the algorithm is O(n þ e).

We use another more complex DR below to illustrate the composition procedure of the
algorithm.

DR5 ({Client name, Elevator price, Elevator specification, floor number, Building name },
{<Client name, “HZDS”>, <building name, “Guangzhi building”>}, <get>).

This algorithm will take the DR and the DSDG of Figure 2 as inputs and search the
required ADSs in the DSDG as follows.

{ADS1, ADS3, ADS5, ADS6, ADS9, ADS10, ADS11, ADS12, ADS13, ADS14, ADS15}
Then, the algorithm will generate a CDS by composing these ADSs. The gray nodes in

Figure 2 are composed into a composite DS.

Algorithm 1. Data service composition algorithm

5. Data view generation
5.1 Basic operations on data view
The performance result of the ADS is represented as a single data view that is a table form.
The data view of the CDS can be obtained bymergingmultiple single data views.We define a

Input: DSDG, DR

Output: CDS

1: function DSComposition(DSDG, DR)

2: fields ← DR

3: for each field in fields do
4: ADSs ← ADS related to field

5: end for
6: InitQueue(queue)

7: EnQueue(queue, ADS0) �The first ADS of ADSs

8: while !QueueEmpty(queue) do
9: ADSi ← DeQueue(queue)

10: adj_ADSs ← DSDG �Find all adjacent ADSs of ADSi

11: for each ADS in adj_ADSs do
12: if ADS haven’t been visited then
13: EnQueue(queue, ADS)

14: pre_ADSs ← ADSi is the prior node of ADS

15: if all ADSs have been visited then
16: break;

17: end if
18: end if
19: end for
20: end while
21: for j = 1 → the size of ADSs do
22: cur_ADS ← ADSj

23: pre_ADS ← pre_ADSs(cur_ADS) �Get the prior node of cur_ADS

24: while cur_ADS is not ADS1 do
25: if CDS dosen’t contain cur_ADS then
26: Add cur_ADS into CDS;

27: else
28: break

29: end if
30: cur_ADS ← pre_ADS

31: pre_ADS ← pre_ADSs(cur_ADS)

32: end while
33: end for
34: return CDS

35: end function

Sharing large
data collections

55

set of basic operations on the data view, including the selection operation, join operation,
projection operation and set operation, to generate a full data composition view.

Definition 5. Selection operation.The selection operation refers to selecting the tuples that
satisfy certain condition from a data view. It can be represented as follows

σconditionðADSÞ

Definition 6. Join operation. The joint operation between the ADS1 and ADS2 refers to
selecting tuples that satisfy certain condition from the Cartesian product of
two data views. It can be represented as follows:

ADS1 ⋈
Xi conditionYi

ADS2

where the ⋈ is the join operator; Xi is the field of ADS1; and Yi is the field of ADS2.

Definition 7. Projection operation.The projection operation refers to selecting the desired
fields to construct a new data view. It can be represented as follows:

ΠAðADSÞ
where the A represents the desired fields.

In addition to the above operations, there are set operations that include intersection, union
and difference operations. These set operations are utilized to merge multiple single data
views into a full data composition view. Table 3 lists these basic data view operations.

5.2 Data view generation algorithm
Data view of CDS is generated by merging multiple single data views of ADSs. Algorithm 2
gives the data view generation algorithm for a given CDS. Its input is a CDS, which is
composed of multiple ADSs and a DR, which specifies the conditions of request data. Its
output is a data composition view. The algorithm takes the first field-related ADS in the
conditions of DR as the starting node and pushes it into a queue to be visited. This ADS is
performed with the field value in the conditions of DR as input. For example, in the condition
of <Client name, “HZDS”>, the filed value is “HZDS”. The condition is stored in a two-
dimensional array. The output of the previous ADS is used as input, and the nodes in CDS are
sequentially accessed and executed according to the breadth-first strategy. The JOINT
operation is performed on the data view and the current data view. If there are redundant
data, thePROJECTION operationwill be performed, and all unvisitedADSs connected to this
ADS are divided. The algorithm continues to visit the ADSs in the queue until it is empty. A
local data view is obtained. After that, the algorithm will sequentially access and perform
other divided ADSs with the breadth-first strategy, until all ADSs in the CDS are performed.

ID Data view operation Function description

1 σconditionðADSÞ Select tuples from data view of ADS according to the condition
2 ADS1 ⋈

condition
ADS2 Joint data views of ADS1 and ADS2 according to the condition

3
Q
fields(ADS) Project specified fields from data view of ADS.

4 ADS1∩ADS2 Union data views of ADS1 and ADS2
5 ADS1∪ADS2 Intersect data views of ADS1 and ADS2
6 ADS1�ADS2 Data view of ADS1 minus data view of ADS2

Table 3.
Data view
operation types

JIMSE
3,1

56

All local data views are joined together in sequence to form a composite view, and then the
PROJECT operation and SELECTION operation are respectively performed on the composite
view according to all conditions. Finally, the final data view is generated.

Algorithm 2. Data view generation algorithm

The CDS composed in Section 4 is taken as an example. Algorithm 2 selects ADS6 as the
starting node to perform the operation. The ADS5, ADS10, ADS12, ADS11 and ADS9 are
performed in turn with the bread-first strategy. A local data view, named VIEW1, will be
generated by joining all performing results of the ADSs.

Theremay be redundant data after performingADS9. To avoid performingADS1with the
same value of inputs, all unvisited ADSs connected to ADS9 are divided, i.e. ADS1 and ADS3.
The output of ADS9 is performed with the PROJECTION operation and the result is taken as
the input for ADS1. Then, the algorithm will continue to access the ADSs in the queue to be
visited, i.e. ADS13, ADS14 andADS15. The performing results will be joinedwith the VIEW1 in
sequence, and the data view named VIEW2 will be generated. When the queue is empty, the

Input: CDS, DR

Output: DCV

1: function DCVGeneration(CDS, DR)

2: conditions ← DR

3: for each condition in conditions do
4: ADSs ← ADS related to condition

5: condition_values ← condition

6: end for
7: InitQueue(queue1)

8: EnQueue(queue1, ADS1) �The first ADS of ADSs

9: while !QueueEmpty(queue1) do
10: ADSi ← DeQueue(queue1)

11: InitQueue(queue2)

12: EnQueue(queue2, ADSi)

13: Add ADSi and input value of ADSi into sub_dataView

14: while !QueueEmpty(queue2) do
15: ADSj ← DeQueue(queue2)

16: adj_ADSs ← CDS �Find all adjacent ADSs of ADSj

17: for each ADS in adj_ADSs do
18: if ADS haven’t been visited then
19: result ← Execute(ADS)

20: Add ADS and result into sub_dataView

21: if the condition may create data redundancy then
22: ADSk ← The next adjacent node of ADS

23: EnQueue(queue1, ADSk)

24: else
25: EnQueue(queue2, ADS)

26: end if
27: end if
28: end for
29: end while
30: Add ADSi and sub_dataView into dataView

31: end while
32: if the size of dataView > 0 then
33: for j = 0 → the size of dataView do
34: DCV ← Join(DCV, dataView[i])

35: end for
36: end if
37: DCV ← Projection(DCV, DR.fields);

38: DCV ← Selection(DCV, DR.conditions);

39: return DCV

40: end function

Sharing large
data collections

57

ADSs that were previously divided are accessed. The ADS1 and ADS3 are pushed into the
queue and performed sequentially, each performing result of the ADS is joined with another
new data view named VIEW3. The field-related ADSs of VIEW1, VIEW2 and VIEW3 are
drawn in Figure 3.

Until now, all ADSs in the CDS are performed, and the VIEW2 and VIEW3 are performed
with set operation to generate a composition view. The composite data view is performedwith
the projection operation and selection operation according to the fields and conditions of the
DR, respectively, to generate the final composition view.

6. Experimental results
Since there are no public benchmarks, we utilize real cross-organization elevator data to
evaluate the proposed approach. There are elevator design data, elevator sales data, elevator
fault data, elevator customer data, elevator manufacturing data and elevator maintenance
data, which are extracted from different elevator enterprises.

6.1 Prototype system
We have developed a service-based data view system, called DSViewer, to implement the
data integration and data sharing. Currently, the main functions of the system include DSs
extraction, DS composition, composition view generation and DS management. The system
can automatically generate data composition views for users.

The DSs extraction can automatically extract ADSs from the data source and establish
dependencies among the ADSs. Figure 4 shows the ADSs and their DSDG of the elevator
data. This figure intuitively represents the relationships between ADSs. In the system, all
ADSs are encapsulated into the RESTful services that can be accessed on the web.

The DS composition can generate a CDS by composing the ADSs according to the user’s
DRs. Figure 5 shows the DS composition interfaces. Figure 5(a) shows the DR definition
interface and Figure 5(b) shows the composition results shown with a sub-DSDG. The CDS
can be stored and directly accessed on the web.

The data view generation can perform the CDS and output a data composition view. Users
can conveniently select one CDS that satisfies their demands and define the query conditions.
Figure 6 shows the data view generation interface, where the top is utilized to define the query
conditions, and the bottom is utilized to output the data view.

6.2 Performance evaluation
In this subsection, we will evaluate two key algorithms adopted in the SDCViewer: the DS
composition algorithm and the composition view generation algorithm. The experimental

ADS5 ADS1 ADS3

ADS11ADS6

ADS12

ADS13 ADS15

ADS14

ADS9ADS10

VIEW1
VIEW2
VIEW3

Figure 3.
The sub-DSDG of CDS

JIMSE
3,1

58

Figure 4.
Data service

dependence graph
of ADSs

Sharing large
data collections

59

Figure 5.
Data service
composition interfaces

JIMSE
3,1

60

hardware is a 2.50 GHz 8-core CPU, 16 GB RAM, and 290 GB disk storage. The operation
system is a 64-bit Ubuntu 16.04. All algorithms are implemented with the JAVA
programming language.

6.2.1 Data service composition performance. Since the attributes of the conditions are a sub
set of attributes of the fields, the conditions of the DRdo not affect the composition.We design
the two kinds of data sets shown in Table 4.

(1) Data set 1 keeps the attribute number of fields unchanged and varies the total ADS
number.

(2) Data set 2 keeps the total ADS number unchanged and varies the attribute number of
the fields.

Each test is given a random attribute list, and the average of ten test results is taken as the
experimental result.

We first evaluate the composition performance that aims to show the overall time
consumed by the composition algorithm. Figure 7 shows the composition performance with
different ADS numbers and different attribute numbers. Figure 7(a) shows the overall time
consumed to complete the composition by varying the ADS number, where the X axis
represents the ADS number and the Y axis represents the overall time. It can be seen that the
overall time is increased with the increasing ADS number. The reason is that large ADSs
affect the scope of theDS composition. Figure 7(b) shows the overall time required to complete

Data set type Attribute number of fields Total ADS number

Data set 1 6 100, 200, 400, 600, 800
Data set 2 2, 4, 6, 8, 10 800

Figure 6.
Data view generation

interface

Table 4.
Experimental data sets

for the data service
composition algorithm

Sharing large
data collections

61

the composition with different attribute numbers. This figure represents similar patterns as
Figure 7(a). That is, the total time also increased with the increasing attribute number. More
attributes in the fields will require more ADSs to compose the CDS.

Then, we evaluate the composition quality that aims to check whether the composition
result is optimal. As discussed earlier, there may exist more than one composition result for a
given DR. However, the ADS and attribute numbers may be different. The optimal
composition results should have the minimum ADS number and attribute number. Table 5
gives the statistics of the composition results with different attribute numbers. When the
attribute number of the fields is two, there are three different composition results that all meet
the DR. The first CDS includes four ADSs and four attributes; the second CDS includes four
ADSs and five attributes; and the third CDS includes eight ADSs and eight attributes. Since
the first CDS has the minimum ADS and attribute numbers, it is the optimal composition
result. In addition, the experimental results show that large attribute numbers of the fields
will have fewer composition results. For example, when the attribute number of the fields is
ten, there is only one composition result.

6.2.2 Data view generation performance. We further evaluate the data view generation
algorithm. To evaluate this algorithm, we design three other kinds of data sets, as shown in
Table 6.

Attribute number of fields
Composition results

Optimal CDSADS number Attribute number

2 4 4 Y
4 5 N
8 8 N

4 6 6 Y
8 8 N
8 9 N

6 7 7 Y
10 10 N

8 9 9 Y
12 12 N

10 12 12 Y

Table 5.
Experimental statistics
of the composition
quality

Figure 7.
Performance of data
service composition
algorithm

JIMSE
3,1

62

(1) Data set 1 keeps the attribute number of the fields and conditions unchanged and
varies the tuple number.

(2) Data set 2 keeps the tuple number and the attribute number of the conditions
unchanged and varies the attribute number of the fields.

(3) Data set 3 keeps the tuple number and the attribute number of fields unchanged and
varies the attribute number of the conditions.

Figure 8 shows the performance of the composition view generation algorithm with different
parameters. Figure 8(a) shows the performance with different tuple numbers, where the X
axis represents the tuple number, and theY axis represents the time to generate a data view. It
can be seen that the performance is decreasedwith the increasing tuple number. The reason is

Data set Attribute number of fields Attribute number of conditions Tuple number

Data set 1 6 1 200, 400, 600, 800, 1000
Data set 2 2, 4, 6, 8, 10 1 200
Data set 3 6 1, 2, 4, 6 200

Table 6.
Experimental statistics

of the composition
quality

Figure 8.
Performance of the

data service
composition algorithm

Sharing large
data collections

63

that more tuples will require more SET operations and greater communication time, therefore
consumingmore time. Figure 8(b) shows the performance with different attribute numbers of
the fields, where the X axis represents the attribute number of the fields, and the Y axis
represents the time to generate a data view. It can be seen that the performance also decreases
with the increasing attribute number of the fields. The reason is that more attributes will
require more JOINT operations and, therefore, will consume more time. Figure 8(c) shows the
performance with different attribute numbers of the conditions, where the X axis represents
the attribute number of the conditions, and the Y axis represents the time to generate a data
view. It can be seen that the performance also decreases with the increasing attribute number
of the conditions. The reason is that more attributes of the conditions will require more
SELECTION operations and SET operations and, therefore, will consume more time.

We also evaluate the generation accuracy rate of the algorithm to check whether the data
view meets a given DR. The execution process of the algorithm reveals that the attributes
contained in the data view match the attributes contained in the requirements of the DR, and
the performing results of the CDS satisfy the conditions of the DR. This result indicates that
the final data view can satisfy the DR accurately, and our actual experimental results also
demonstrate this conclusion. Therefore, the generation accuracy rate of the algorithm is 100%.

7. Conclusions
To automatically generate data view on demand from a large number of DSs, we presented an
automatic DS composition and view generation approach. A DSDG is built according to the
inherent dependence and it presents a global perspective on the relationship of DSs. Based on
the DSDG, the DSs can be automatically composed and then data view can be automatically
generated. We have developed a DS view generation system (DSViewer) that enables DS
extraction, DS composition and data view generation. This system provides an effective tool
to integrate heterogeneous cross-organization data. We have evaluated the system and key
algorithms and showed the correctness and effectiveness to generate a desired data view for
users. Our future work will concentrate on the real-time data view update and unstructured
DS integration.

References

Altinel, M., Brown, P., Cline, S., Kartha, R., Louie, E., Markl, V., Mau, L., Ng, Y.H., Simmen, D. and
Singh, A. (2007), “Damia: a data mashup fabric for intranet applications”, International
Conference on Very Large Data Bases, pp. 1370-1373.

Badidi, E., Atif, Y., Sheng, Q. and Maheswaran, M. (2019), “On personalized cloud service provisioning
for mobile users using adaptive and context-aware service composition”, Computing, Vol. 101
No. 4, pp. 291-318, doi: 10.1007/s00607-018-0631-8.

Badidi, E. and Routaib, H. (2018), “A DaaS based framework for IoT data provisioning”, Advances
in Intelligent Systems and Computing, Vol. 661, pp. 369-379, doi: 10.1007/978-3-3-319-67618-
0_34.

Cai, A.J., Guo, Z.X., Guo, S.H., Cai, Y. and Xue, X. (2019), “Optimization strategy of knowledge service
composition in cloud manufacturing environment”, Computer Integrated Manufacturing
Systems, Vol. 25 No. 2, pp. 421-430, doi: 10.13196/j.cims.2019.02.015.

Carey, M., Reveliotis, P., Thatte, S. and Westmann, T. (2008), “Data service modeling in the AquaLogic
data services platform”, IEEE Congress on Services, IEEE, Honolulu, pp. 78-80.

Chen, X., Han, Y., Wen, Y., Zhang, F. and Liu, W. (2017), “A keyword-driven data service composition
sequence generation approach on ad-hoc data query”, 2017 IEEE International Conference on
Web Services, IEEE, Honolulu, pp. 874-877.

JIMSE
3,1

64

https://doi.org/10.1007/s00607-018-0631-8
https://doi.org/10.1007/978-3-3-319-67618-0_34
https://doi.org/10.1007/978-3-3-319-67618-0_34
https://doi.org/10.13196/j.cims.2019.02.015

Dara, N. and Emadi, S. (2021), “Enriching web services tags to improve data-driven web services
composition”, Journal of Web Engineer, Vol. 20 No. 2, pp. 327-358, doi: 10.13052/jwe1540-
9589.2025.

Faieq, S., Front, A., Saidi, R., Ghazi, H.E. and Rahmani, M.D. (2019), “A context-aware
recommendation-based system for service composition in smart environments”, Service
Oriented Computing and Applications, Vol. 13 No. 4, pp. 341-355, doi: 10.1007/s11761-019-
00277-7.

Goga, K., Xhafa, F. and Terzo, O. (2018), “VM deployment methods for DaaS model in clouds”, 6th
International Conference on Emerging Internet, Data and Web Technologies, Springer, Berlin,
pp. 371-382.

Gu, Q., Cao, J. and Yang, X. (2018), “A web services composition discovery approach based on service
data network”, IEEE International Conference on Progress in Informatics and Computing, IEEE,
Suzhou, pp. 344-350.

Han, Y., Wang, G., Ji, G. and Zhang, P. (2013), “Situational data integration with data services and
nested table”, Service Oriented Computing and Applications, Vol. 7 No. 2, pp. 129-150.

Huo, Y. and Zhang, J.D. (2020), “A nonlinear service composition method based on the Skyline
operator”, Journal of Systems Engineering and Electronics, Vol. 31 No. 4, pp. 743-750, doi: 10.
23919/JSEE.2020.000049.

Immonen, A., Ovaska, E. and Paaso, T. (2018), “Towards certified open data in digital service
ecosystems”, Software Quality Journal, Vol. 26 No. 4, pp. 1257-1297, doi: 10.1007/s11219-017-
9378-2.

Jia, S.J. and Wang, J. (2020), “Construction method of user-centered stream data processing
application”, Computer Technology and Development, Vol. 30 No. 12, pp. 45-50, doi: 10.3969/j.
issn.1673-629X.2020.12.008.

Li, Y. and Zhang, H.M. (2021), “Data service solution based on FTP protocol”, Computer Systems and
Applications, Vol. 30 No. 1, pp. 63-69, doi: 10.15888/j.cnki.csa.007736.

Liu,M.C.,Wang, N. and Zhou,N. (2019), “Dependency analysis based cloud composition service information
flow controlmechanism”,Computer Science, Vol. 46No. 4, pp. 189-196, doi: 10.11896/j.issn.1002-137X.
2019.04.030.

Malki, A., Barhamgi, M., Benslimane, S.M., Benslimane, D. and Malki, M. (2014), “Composing data
services with uncertain semantics”, IEEE Transactions on Knowledge and Data Engineering,
Vol. 27 No. 4, pp. 936-949.

Plebani, P., Salnitri, M. and Vitali, M. (2018), “Fog computing and data as a service: a goal-based
modeling approach to enable effective data movements”, 30th International Conference on
Advanced Information Systems Engineering, Springer, Tallinn, pp. 203-219.

Psomakelis, E., Nikolakopoulos, A., Marinakis, A., Psychas, A., Moulos, V., Varvarigou, T. and
Christou, A. (2020), “A scalable and semantic data as a service marketplace for enhancing
cloud-based applications”, Future Internet, Vol. 12 No. 5, pp. 77-97, doi: 10.3390/fi12050077.

Romdhani, S., Bennani, N., Ghedira-Guegan, C. and Vargas-Solar, G. (2019), “Trusted data integration
in service environments: a systematic mapping”, International Conference on Service-Oriented
Computing, Springer, Toulouse, pp. 237-242.

Sellami, W., Hadj Kacem, H. and Hadj Kacem, A. (2020), “Dynamic provisioning of service composition
in a multi-tenant SaaS environment”, Journal of Network and Systems Management, Vol. 28
No. 4, pp. 367-397, doi: 10.1007/s10922-019-09510-2.

Silva, N., Ribeiro, E.L.F. and Claro, D.B. (2018), “DaaS repository through MIDAS web Crawler”, 14th
Brazilian Symposium on Information Systems, Association for Computing Machinery,
pp. 246-253.

Vieira, M.A., Ribeiro, E.L.F., Claro, D.B. and Mane, B. (2021), “Integration model between
heterogeneous data services in a cloud”, Journal of Universal Computer Science, Vol. 27
No. 4, pp. 387-412, doi: 10.3897/jucs.67046.

Sharing large
data collections

65

https://doi.org/10.13052/jwe1540-9589.2025
https://doi.org/10.13052/jwe1540-9589.2025
https://doi.org/10.1007/s11761-019-00277-7
https://doi.org/10.1007/s11761-019-00277-7
https://doi.org/10.23919/JSEE.2020.000049
https://doi.org/10.23919/JSEE.2020.000049
https://doi.org/10.1007/s11219-017-9378-2
https://doi.org/10.1007/s11219-017-9378-2
https://doi.org/10.3969/j.issn.1673-629X.2020.12.008
https://doi.org/10.3969/j.issn.1673-629X.2020.12.008
https://doi.org/10.15888/j.cnki.csa.007736
https://doi.org/10.11896/j.issn.1002-137X.2019.04.030
https://doi.org/10.11896/j.issn.1002-137X.2019.04.030
https://doi.org/10.3390/fi12050077
https://doi.org/10.1007/s10922-019-09510-2
https://doi.org/10.3897/jucs.67046

Wang, G.L., Han, Y.B., Zhang, Z.M. and Zhu, M.L. (2017), “Cloud-based integration and service of
streaming data”, Chinese Journal of Computers.

Wang, G.L., Zuo, X., Hesenius, M., Xu, Y., Han, Y. and Gruhn, V. (2018), “A data services composition
approach for continuous query on data streams”, 2nd International Joint Conference on Asia-
Pacific Web, Springer, Cham, pp. 106-120.

Xi, N., Ma, J., Sun, C., Lu, D. and Shen, Y. (2018), “Information flow control on encrypted data for
service composition among multiple clouds”, Distributed Parallel Databases, Vol. 36 No. 6,
pp. 511-527, doi: 10.1007/s10619-018-7228-2.

Xie, J. and Xiao, L. (2014), “Research on data integration based on virtual view and its application”,
Engineering Journal of Wuhan University, Vol. 47 No. 2, pp. 281-285.

Xu, X.S., Wang, Z., Guo, D.D., Wang, Y. and Kang, Y. (2018), “Design and implementation of a
dynamic data service publishing engine”, Computer Applications and Software, Vol. 35 No. 7,
pp. 126-130, doi: 10.3969/j.issn.1000-386x.2018.07.022.

Yu, H., Cai, H., Zhou, J. and Jiang, L. (2017), “Data service generation framework from heterogeneous
printed forms using semantic link discovery”, Future Generation, Vol. 79 No. 2, pp. 514-527,
doi: 10.1016/j.future.2017.09.059.

Yunkon, K. and Eui-Nam, H. (2017), “Study on user customized data service model for improving data
service reliability”, 11th International Conference on Ubiquitous Information Management and
Communication, Association for Computing Machinery, New York, pp. 1-8.

Zhang, P., Han, Y.B. and Wang, G.L. (2013), “Implementing dynamic nested view update based on
data service”, Chinese Journal of Computers, Vol. 36 No. 2, pp. 226-237, doi: 10.3724/SP.J.1016.
2013.00226.

Zhang, Y.M., Li, M.N., Huang, L.Y., Lu, J.W. and Xiao, G. (2020), “Data composition view positioning
update approach with incremental logs”, Computer Science, Vol. 47 No. 6, pp. 85-91, doi: 10.
11896/jsjkx.190500085.

Zhang, Y.M., Ye, C.L. and Huang, L.Y. (2018), “Research on data service dependency graph model
and automatic composition”, Journal of Chinese Computer Systems, Vol. 39 No. 3, pp. 450-456,
doi: 10.3969/j.issn.1000-1220.2018.03.009.

Zorrilla, M. and Garc�ıa-Saiz, D. (2013), “A service oriented architecture to provide data mining services
for non-expert data miners”, Decision Support Systems, Vol. 55 No. 1, pp. 399-411.

Corresponding author
Yuanming Zhang can be contacted at: zym@zjut.edu.cn

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

JIMSE
3,1

66

https://doi.org/10.1007/s10619-018-7228-2
https://doi.org/10.3969/j.issn.1000-386x.2018.07.022
https://doi.org/10.1016/j.future.2017.09.059
https://doi.org/10.3724/SP.J.1016.2013.00226
https://doi.org/10.3724/SP.J.1016.2013.00226
https://doi.org/10.11896/jsjkx.190500085
https://doi.org/10.11896/jsjkx.190500085
https://doi.org/10.3969/j.issn.1000-1220.2018.03.009
mailto:zym@zjut.edu.cn

	Sharing large data collections using data services in cloud environment
	Introduction
	Related work
	Data service dependence graph construction
	Data service composition
	Data view generation
	Basic operations on data view
	Data view generation algorithm

	Experimental results
	Prototype system
	Performance evaluation
	Data service composition performance
	Data view generation performance

	Conclusions
	References

