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Abstract
Purpose – Individuals’ driving behavior data are becoming available widely through Global Positioning System devices and on-board diagnostic
systems. The incoming data can be sampled at rates ranging from one Hertz (or even lower) to hundreds of Hertz. Failing to capture substantial
changes in vehicle movements over time by “undersampling” can cause loss of information and misinterpretations of the data, but “oversampling”
can waste storage and processing resources. The purpose of this study is to empirically explore how micro-driving decisions to maintain speed,
accelerate or decelerate, can be best captured, without substantial loss of information.
Design/methodology/approach – This study creates a set of indicators to quantify the magnitude of information loss (MIL). Each indicator is
calculated as a percentage to index the extent of information loss (EIL) in different situations. An overall information loss index named EIL is created
to combine the MIL indicators. Data from a driving simulator study collected at 20 Hertz are analyzed (N = 718,481 data points from 35,924 s of
driving tests). The study quantifies the relationship between information loss indicators and sampling rates.
Findings – The results show that marginally more information is lost as data are sampled down from 20 to 0.5 Hz, but the relationship is not linear.
With four indicators of MILs, the overall EIL is 3.85 per cent for 1-Hz sampling rate driving behavior data. If sampling rates are higher than 2 Hz, all
MILs are under 5 per cent for importation loss.
Originality/value – This study contributes by developing a framework for quantifying the relationship between sampling rates, and information loss
and depending on the objective of their study, researchers can choose the appropriate sampling rate necessary to get the right amount of accuracy.

Keywords Driver behaviours and assistance, Sensor data processing, Information loss, Instantaneous driving decisions, Sampling rate,
Undersampling

Paper type Research paper

Introduction

In 2017, theNationalHighwayTraffic SafetyAdministration of the
United States announced its decision to move forward with the
vehicle-to-vehicle (V2V) communication technology for all new
light-duty vehicles (NHTSA, 2017). Newly manufactured vehicles
will likely be equipped with dedicated short-range communication
(DSRC) devices by regulation. As the roll-out of the V2V
environment, diagnostic sensors will be installed on vehicles to
collect data, and the data will be transmitted wirelessly between
vehicles and nearby infrastructures. It would no longer have to rely
on conventional data collection equipment, such as loop detector
or video detections, and it collectsmuchmore information than the
conventional ways (Liu, 2015; Liu and Khattak, 2016; Liu and
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Khattak, 2019; Studer et al., 2019). Measurements that are
previously unknown are now available, which include but not be
limited to vehicle speeds, positions, arrival rates, rates of
acceleration and deceleration, queue lengths, stopped time and so
on. With the increasing amount of data collected from DSRC-
equipped vehicles, it is now made possible to explore micro-level
driver behaviors. Instantaneous driving decisions are of particular
interest, because they are the foundation of monitoring energy
consumption, emissions and safety on a real-time basis. Driving
decisions consists of a collection of maneuvers: accelerating,
decelerating, maintaining speed, altering acceleration/deceleration,
etc. Driving reflects a chain of instantaneous driving decisions
made by drivers according to changes in surrounding
circumstances, e.g. adjacent vehicles, roadway conditions and
geometric changes in the roadway and weather conditions (Wang
et al., 2015).
Intuitively, higher rate sampled data can capture more

information about the instantaneous driving decisions. Current
data collection in industry can go as high as 800MHz (Linear
Technologies, 2014). However, driving data is not always
necessarily sampled by such high rates in the transportation
context. One problem of high sampling rates is cost, particularly
under the context of the big data-driven intelligent transportation
systems, in terms of requiring extra storage and processing time,
which is called oversampling (Chawla, 2010). Another problem
for data sampled by high sampling rates is the data accuracy. The
Next Generation Simulation Program (NGSIM) collected
detailed vehicle trajectory data in 10Hz to develop behavioral
algorithms in support of traffic simulation on microscopic
modeling (Punzo et al., 2011), as well as Safety Pilot Model
Deployment (SPMD) sampling the safety messages (e.g. motion
and location data) transmitted between connected vehicles and
infrastructures at 10Hz (Henclewood, 2014). The accuracy of
NGSIM data is estimated at 2-4 ft (Kovvali et al., 2007). For
NGSIM data, in 0.1 s, the distance traveled by a 60mph vehicle is
about 8.8 ft but with a 2-4 ft error. Therefore, the accuracy of
NGSIMdatamight be jeopardizedwith high sampling rates.
However, it does not mean low sampling rates are always

desirable; undersampling/inadequate sampling may cause loss of
critical information (Meade et al., 1991). Jackson et al. (2005)
discussed the validity of using in-vehicle GPS second-by-second
(1Hz) velocity data to track the 1-s driving operation modes,
including acceleration and deceleration. Their results imply that
the 1-s operation modes can be successfully measured by using
GPS data sampled by 1Hz (Jackson et al., 2005), whereas the
driving operationmodes within 1 s are unknown. For example, if a
driving command – “acceleration! deceleration! acceleration”
occurs within 1 s, the 1Hz sampled data may lose the information
about the deceleration.
Current driving data are usually continuously sampled by

rates from 0.2 to 10Hz (Int Panis et al., 2006; Ahn and Rakha,
2008; Campbell, 2012; Wang et al., 2008; Hung et al., 2007;
Lyons et al., 1986; Boriboonsomsin et al., 2010; Simpson and
Markel, 2012; TSDC Secure Transportation Data Project,
2014). Note that the continuous driving data are different from
the traffic data collected by loop detectors (Bikowitz and Ross,
1985; Oh et al., 2002). The focus of this study is the continuous
driving data used to explore micro-driving behavior. The key
question to be answered is what sampling rates are appropriate

to capture micro-driving behavior without losing much
information (i.e. by undersampling).
In the field of signal processing, Nyquist–Shannon sampling

theorem gives the appropriate sampling rates for continuous
signal. The Nyquist criterion for sampling rates is twice the
bandwidth of a bandlimited signal or a bandlimited channel.
The key question is to find out the bandwidth of a signal
(Landau, 1967). However, the driving behavior does not fulfill
the features of bandlimited signal. Driving behavior varies
according to the decisions a driver makes to respond the
instantaneous driving circumstances. This study aims to find
out the appropriate sampling rates for driving behavior data
through exploring the nature of driver’s micro-driving
behavior.

Data description

Data used in this study comes from theUniversity of Tennessee
Driving Simulator Lab (DSL). This driving simulator, Drive
Safety DS-600c, is fully integrated and immersive to driving
test subjects with its visual and audio effects in the front half cab
of a Ford Focus sedan and it provides 300° horizontal field-of-
view via five projectors and back sight via three rear mirror
liquid crystal displays (Yang et al., 2013). The cab base is able
to mimic pitch and 30 longitudinal motions. Since 2009, over
10 simulator studies have been conducted in DSL. The
equipment has been recognized as a high-fidelity driving
simulator and is qualified to be used to conduct driving
behaviors-associated research. The data of driver responses
(e.g. speed) gathered from simulator driving tests can be used
as surrogate measures of driving behavior (Bédard et al., 2010;
Wang et al., 2010). The driving data used in this study was
collected from 24 subjects (13 males, 11 females, average
licensed year – 17.6, standard deviation – 7.87). Note that, the
scope of this study is to introduce the indicators to quantify the
extent of information loss (EIL) when sampling driving
behavior data. The influences of driving conditions on driving
behavior are not examined in this study. Subjects were tested in
a simulated driving scenario designed with various driving
conditions, covering most possible driving conditions as a
whole, including urban and rural environments, as well as
freeways and local streets. Each subject completed the driving
test in 22-29min, depending on their travel speed and
responses to traffic controls. The driving speed was sampled at
20Hz. The final dataset used in this study includes 718,481
data points from 35,924 s (598min) of driving tests.

Methodology

A fundamental question is “how much information is lost in
going to lower sampling rates?” Driving can be volatile as
drivers made driving decisions (e.g. accelerating and braking)
according to the instantaneous changes of surrounding
circumstances, e.g. adjacent vehicles, roadway conditions,
geometric changes in the roadway and weather conditions
(Wang et al., 2015). Using the 20-Hz simulator driving data,
this study creates a set of indicators to quantify the magnitude
of information loss (MIL):
� MIL1: instantaneous driving decision loss (based on

combined direct and indirect “detectability” explained
below) – equations (1)-(3);
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� MIL2: percentage of out-of-range observations during
driving – equation (4);

� MIL3: ratio of sampled to actual range in driving data –

equation (5); and
� MIL4: relative speed deviation from linear interpolation of

undersampled data (based on observed speed deviation
over the undersampled data) – equations (6) and (7).

An index, called Extent of Information Loss (EIL), is created for
a sampling rate, as shown in equation (8). The overall
methodological framework for this study is shown in Figure 1
and explained in more detail below. There are two groups of
indicators: micro-driving decision indicators and magnitude-
related indicators. The micro-driving decision indicators are
used to capture the missing of micro-driving decisions when
sampling data, and the magnitude-related indicators are to
quantify the magnitude errors between the sampled values and
ground truth values.
Each indicator is calculated as a percentage to index the EIL

in different situations. The EIL is an overall indicator of
information loss that combines the above indicators. The study
quantifies the relationship between information loss indicators

and sampling rates. A user can then select thresholds, e.g. 5 or 1
per cent of information loss may be acceptable, and find the
appropriate sampling rate.

Direct detectability of driving decisions
Driving decisions can be altered at any time and frequently when a
vehicle is being operated. If the frequency of the driving decision
alteration is considerably high and the data sampling rate is very
low, then some driving decisions may be lost. As shown in
Figure 2(a), the decision alteration – “acceleration to
deceleration” between n and n1 1 s is missed by the 1-Hz
sampled data (red points), as the speeds at n and n1 1 s are
identical. In this case, undersampling causes information loss of
micro-driving decisions. The information about going from
“acceleration to deceleration” between n and n1 1 s is lost,
whereas the information on “deceleration” or “no decision
alternation” between n1 1 and n1 2 s is detected directly by the
sampled data.
This study uses the 20-Hz simulator driving data to count the

number of decisions made given a specific time interval, and
then computes the possibility of no decision made cases,

Figure 1 Study steps and indicators
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termed direct detectability of driving decisions. The formula is as
follows:

Direct Detectability ¼ 1
N

XN
i¼1

w0
i (1)

where:
N=T� f, the number of time slices during total data

durationT in second;
f= target sampling frequency/rates, e.g. 1Hz;

N=T� f, the number of time slices during total data
durationT in second;

f= target sampling frequency/rates, e.g. 1Hz;

w0
i ¼ 1; ifmaxfvij � vi j�1ð Þg � minfvij � vi j�1ð Þg � 0;

0; ifmaxfvij � vi j�1ð Þg � minfvij � vi j�1ð Þg < 0;

�
,

indicator formicro-driving decision alternation during
i th time interval; t ¼ 1

f ; i ¼ 1; 2; 3; . . . ;N;
vij= speed at j th location in i th time interval, j = 1, 2, 3, . . ., n;
n ¼ T

N ¼ F
f , number of available data points in a given time

interval; and
F= sampling rate of original dataset, 20Hz in this study.

In this study, time intervals without decisions made belong
to Case 0 (this includes constant acceleration or
deceleration), as shown in Figure 2(b), with one micro-
decision made are referred to as Case 1 and with two
decision alternations are referred to as Case 2. Case 1 will be
further discussed below.

Indirect detectability of driving decisions
Direct detectability tells the chance of detecting micro-driving
decisions directly with the sampled data. Next, this study
discusses the chance of detecting driving decisions in Case 1. It
is believed that driving speed can only continuously change
without sharp changes. A sine wave illustrates the example of
continuous changes, whereas square wave and sawtooth wave
are examples of sharp changes (Elmore andHeald, 2012).
This study takes 1-s interval (corresponding to 1-Hz

sampling rate) as the example for illustrating detection of
driving decision alternation. Figure 3(a) presents six possible
types of micro-driving behavior of Case 1 within 1 s. Types (a)
and (c) show that there is a micro-decision made from
accelerating to decelerating between n and n1 1 s. Types (b)
and (d) show that there is a micro-decision made from
decelerating to accelerating between n and n1 1 s.
For Type (a), there is a micro-decision made from

accelerating to decelerating between n and n1 1 s, whereas the
speed measurement at n and n1 1 s implies a deceleration
during that second. Therefore, the missing micro-decision
made within this second could be observed by using given
sampling data points at n and n1 1 s, though the amount/
intensity of the driving decision change is not necessarily
accurate. In the same fashion, Type (b) illustrates information
detection for the micro-decision made from decelerating to
accelerating. Therefore, for Types (a) and (b), the micro-
decision change can be detected but with an error.
Types (c) and (d) do not meet the situations in Types (a)

and (b), because the sampled data do not show the correct

Figure 2 Example of information loss in instantaneous driving decisions
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micro-decision made between two sampled observations.
Types (c) and (d) also include the cases that speed at n
second is equal to n11 s, as shown in Figure 2(a), because
in these cases, the sampled observations cannot tell the
micro-decision correctly.
Therefore, wemove our sight to the next second, as shown in

Figure 3(b). In Type (c1), the sampled speeds at n1 1 and n1
2 s give a deceleration which uncovers the lost micro-decision
made between n and n1 1 s, but with a temporal error. The
time stamped for the micro-decision using sampled data is at
n1 1 s, but actually, it occurred between n and n1 1 s. Type

(d1) is similar to Type (c1), but for detecting a micro-decision
from decelerating to accelerating.
Types (c2) and (d2) illustrate two types of micro-decisions

which cannot be easily detected, because there are two distinct
micro-decisions (acceleration and acceleration) made in two
sequential sampling intervals. Besides, for cases with two or
more micro-decisions made within one particular time interval,
there is no way to detect them by the above methods. This
study mainly discusses Case 1 with one micro-decision made
and tries to find the possibilities of having Types (a), (b), (c1)
and (d1) given a time interval. The indicator, indirect

Figure 3 Examples of missing information when examining speed data over time
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detectability of driving decisions, is the sum of the possibilities of
having Types (a), (b), (c1) and (d1).
The formula is as follows:

Indirect Detectability ¼ 1
N

XN
i¼1

wa
i 1wb

i 1wc1
i 1wd1

i

� �
(2)

where
N = T� f is the number of time slices during the total data

durationT in second;
f= target sampling frequency/rates, e.g. 1Hz;

w1
i ¼ 1; if

Xn�1

j¼1
zj ¼ 1;

0; if
Xn�1

j¼1
zj 6¼ 1

8><
>: indicator for whether there is

only one decision change during ith time interval
t ¼ 1

f ; i ¼ 1; 2; 3; . . . ;N;

zj ¼ 1; if vij � vi j�1ð Þð Þ � vi j1 1ð Þ � vijð Þ < 0
0; if vij � vi j�1ð Þð Þ � vi j1 1ð Þ � vijð Þ � 0

(
, indicator

for whether two consecutive micro-decisions are the
same (either acceleration or deceleration);

v
ij
= speed at jth location in ith time interval, j=1, 2, 3,
[. . .], n;

n ¼ T
N ¼ F

f , the number of available data points in a given
time interval;

F = sampling rate of the original dataset, 20Hz in this
study.

wa
i ¼

1; if vij � vi j�1ð Þð Þ > 0 and vi j1 nð Þ � vi j1 n�1ð Þð Þ
< 0 and vij > vi j1 nð Þ

0
; indicatorType for ðaÞ error;

8><
>:

wb
i ¼

1; if vij � vi j�1ð Þð Þ < 0 and vi j1 nð Þ � vi j1 n�1ð Þð Þ
> 0 and vij < vi j1 nð Þ

0
; indicator for Type ðbÞ error;

8><
>:

wc
i ¼

1; if vij � vi j�1ð Þð Þ > 0 and vi j1 nð Þ � vi j1 n�1ð Þð Þ
< 0 and vij < vi j1 nð Þ

0
; indicator for Type ðc1Þ error;

8><
>:

wd
i ¼

1; if vij � vi j�1ð Þð Þ < 0 and vi j1 nð Þ � vi j1 n�1ð Þð Þ
> 0 and vij > vi j1 nð Þ

0
; indicator for Type ðd1Þ error;

8><
>:

Instantaneous driving decision loss
With the direct and indirect detectability of driving decisions,
we can detect micro-driving decision made given a particular
sampling rate. The formula for instantaneous driving decision
loss (MIL1) is as follows:

Decision Loss ¼ 1� Direct Detectabilityð
1 Indirect DectetabilityÞ (3)

Empirical results are shown later. Theoretically, higher sampling
rates lower the possibility of missing critical decisions, but they

increase the possibility of “noise” in the data and the data storage
and processing requirements. The challenge is to not lose
decision informationwhile reducing the noise in the data.

Indicators concerningmagnitudes
It is important to know whether sampled values represent the
population and the magnitude of errors, if any. In other words,
whether the one point (e.g. 1Hz data) can represent the 20 data
points (20Hz data) during the same second? If the 20 data
points provide only marginally more information (such as
constant speed during 1 s), one data point might be sufficient
for sampling this second.
Figure 4(i) shows an example using 20Hz simulator data,

along with two 1-Hz sampled points at the n and n11 s. The
speed is 10mph at n second and 12mph at n1 1 s. The question
would be whether all speed values between n and n1 1 s are
within the micro-speed range 10-12mph. The example shows
that given a 1-s time interval, there are six data points, or 30
per cent (6 out of 20) data points with speed values out of range
10-12mph. In this case, two data points with records of 10 and
12mph cannot fairly represent the driving behavior from n to n
11 s. The percentage of out-of-range observation (MIL2) is an
indicator that captures how many data points are out of the
sampledmicro-speed range. Theoretically, the value ofMIL2 can
be from zero to extremely close to 100 per cent.
The formula for percentage of out-of-range observation (MIL2)

is as follows:

Percentage of Out RangeObservations ¼ 1
N

XN
i¼1

Xn

j¼1
ORij

n

(4)

where
ORij ¼ 1; if vij > max fvi1; ving or vij < min fvi1; ving

0

�
, indicator

for out-of-range observation.
The ratio of sampled micro-speed range over actual micro-
speed range during the same second is another indicator of
information loss and it is termed ratio of sampled to actual range
(MIL3). In the example, the sampledmicro-speed range is 12�
10 = 2mph, whereas the actual micro-speed range is 12.3 �
9.6 = 2.7mph. The ratio is 2/2.7 = 0.74, or 74 per cent. The
formula is as follows:

Ratio of Sampled toActual Range ¼ 1
N

XN
i¼1

RSampled
i

RActual
i

(5)

where
RSampled
i ¼ jvi1 � v i1 1ð Þ1j, sampled speed range for ith time

slice;
RActual
i ¼ max vijf g �minfvijg, actual speed range for ith time

slice.

An indicator of information loss is through speed
deviations. The deviations are measured based on the linear
distance between observed speeds and sampled speeds.
Sampled data can be used to linearly interpolate the data
points in between two time stamps. This can be compared
with observed data at a higher frequency (20Hz in this
case). Figure 4(b) uses 20-Hz driving simulator data and
measures observed speed deviation, which is the mean of
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absolute deviations within time intervals. Another indicator
is relative speed deviation (MIL4), which is the average
deviations over interpolated speed values, providing the
extent of deviations. The formulas are as follows:

Observed Speed Deviation ¼ 1
N

XN
i¼1

1
n

Xn
j¼1

���vij � j � vi1 � vi n11ð Þ
n

���
 !

(6)

Relative Speed Deviation ¼ 1
N

XN
i¼1

1
n

Xn
j¼1

jvij � j � vi1�vi n1 1ð Þ
n j

vij

 !

(7)

Index formagnitude of information loss
The instantaneous driving decision loss, percentage of out-of-range
observation, ratio of sampled to actual range and relative speed
deviation quantify the MIL from different angles. All these
indicators are finally calculated in terms of percentage of
information loss. Then, these indicators can be combined
(weighted equally) to create an index capturing the EIL index,
given a sampling rate. The formula is as follows:

Extent of Information Loss Index

¼ MIL1 1MIL2 1 1�MIL3ð Þ1MIL4

4
(8)

where
MIL1 = instantaneous driving decision loss;
MIL2 = percentage of out-of-range observations;
MIL3 = ratio of sampled to actual range; and
MIL4 = relative speed deviation.

Users of data in the transportation context can either choose a
threshold for information loss and find the appropriate
sampling rate or vice versa.

Results

Direct detectability of driving decisions
To capture alternations between acceleration and deceleration
within the given time interval (e.g. 1 s) corresponding to a
sampling rate (e.g. 1Hz), the number of alternations was
counted by using 20Hz data. All possible alternations within
the data, given different time intervals and starting locations,
were counted. If all decisions made occur exactly at the
sampled points, no information will be lost. For example, in
Figure 2, if the data was just sampled at n1 0.5 s and n1 1.5 s

Figure 4 Quantifying magnitude errors in sampled data
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instead of n and n1 1 s, then the driving decisions from
accelerating to decelerating can be detected accurately, even if
the data are still sampled at 1Hz. The example in Figure 2
shows that there are 20 possible locations to start sampling the
1Hz data.
Figure 5(a) presents the direct detectability and

possibility of no decision made (Case 0), given a specific
time interval, and Figure 5(b) presents the distribution of
the possibilities of the three cases (discussed above) in
different time intervals. For short time intervals, the location
does not have a significant influence on the data sampling.
Specifically, for time interval of 1 s (1Hz sampling rate), the
direct detectability is around 89.9 per cent, i.e. Case 0 or no
micro-decision made during 1-s intervals. The reason is
probably related to the driver reaction time, which is usually
more than 1 s (AASHTO, 2011).
In Figure 5(b), the percentages of possibilities of the three

cases (i.e. no decision, one decision and two and more
decisions made within the sample interval) are provided.
Shorter time intervals (higher sampling rates) are related to the
lower information loss in terms of instantaneous driving
decisions, as expected. For time interval of 1 s (1Hz sampling
rate), Case 1 accounts for 9.2 per cent and Case 2 accounts for
0.9 per cent of sampling intervals (1 s).

Indirect detectability of driving decisions
Figure 6(a) shows percentages of Types (a), (b), (c1) and (d1)
in Case 1 (one decision change). Specifically, given a 1-s time
interval (or 1-Hz sampling rate), Types (a), (b), (c1) and (d1)

constitute 31, 25.37, 21.42 and 16.14 per cent of Case 1, where
only one micro-decision is made between two sampled data
points. These four types of patterns contain detectable driving
information. The indirect detectability is the sum of these
possibilities, shown in Figure 6(b). For 1-s time interval (or 1-
Hz sampling rate), the indirect detectability is around 31
per cent1 25.37 per cent1 21.42 per cent1 16.14 per cent =
93.92 per cent. With the time interval getting longer, this
indirect detectability decreases.

Instantaneous driving decision information loss
The combined results of instantaneous driving decision loss are
shown in Table I. There is an 89.90 per cent chance that there
is no micro-decision (Case 0) within 1 s (1-Hz sampling data,
highlighted in Table I) and 9.20 per cent chance that there is
one micro-decision (Case 1). For Case 1 with only one micro-
decision, there is a 30.99 per cent chance that the Type (a)
decision pattern would occur, and 25.37, 24.42 and 16.14
per cent for Types (b), (c) and (d), respectively. These four
types include micro-decisions that can be detected. Therefore,
in summary, the feasibility of detecting micro-driving decisions
for 1Hz sampling data are 89.90 per cent 1 9.20 per cent �
(30.99 per cent 1 25.37 per cent 1 24.42 per cent 1 16.14
per cent) = 98.54 per cent, and 1.46 per cent of information
about micro-decisions would be lost. Data sampled by rates
higher than 0.5Hz can reflect more than 95 per cent of micro-
decisions and the instantaneous driving decision loss is less
than 5 per cent.

Figure 5 “Direct detectability” for data sampled between different time intervals
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Indicators concerningmagnitudes
Results in Table II show that lower sampling rates (or longer
time intervals) are associated with larger percentages of out-
of-range points, smaller ratio of sampled-to-actual range,
larger speed deviations and relative speed deviations, as
expected. Percentage of out-of-range points concerns the
sampled micro-speed range within a time interval. The
sampled micro-speed range is determined by two sequential
recorded data points, as shown in Figure 4. The results show
that, on average, 1.75 points (or 8.75 per cent) are out of the
sampled micro-speed range for 1-s time interval (or 1-Hz
data), because there is a large possibility that there is no
micro-decision changes during 1 s. It is consistent with the
above finding that for the time interval of 1 s, the average
possibility of no micro-decision change is 88.90 per cent (see
Figure 5). For 1-Hz data, the ratio of sampled to actual micro
range is 0.957, which means the extent of representativeness
of the 1-Hz data to 20-Hz data is about 95.7 per cent in terms
of magnitude. Though some data points are possibly out of
the recorded micro ranges, these points do not deviate
broadly. Further, 1-Hz data have an observed speed deviation
of about 0.076mph. Note that 1 per cent percentile of
718,481 20-Hz speed records is 0.493mph, and thus the
deviation of 0.076mph is not substantial in the distribution of
speed records. This is consistent with EPA drive cycle data,
which is based on 10-Hz (EPA, 2013). Further, the relative
speed deviation, ratio of deviation over interpolated speeds,
shows that 1-Hz data has a relative speed deviation to 20-Hz

speed records at 0.87 per cent, substantially lower than the 5
per cent threshold.

Extent of information loss
The overall EIL is an equally weighted indicator, calculated
using equation (8). The results are shown in Table II. We know
if the sampling rate is 1 Hz, the percentage of out-of-range
points is 8.77 per cent, ratio of sampled to actual range is 95.71
per cent, relative speed deviation is about 0.87 per cent and the
instantaneous driving decision loss is about 1.46 per cent. So,
the overall EIL is (8.77 per cent 1 (100 per cent � 95.71
per cent)1 0.87 per cent 1 1.46 per cent)/4 = 3.85 per cent.
Thus, overall, about 3.85 per cent of the driving information,
including the micro-driving decisions and speed magnitude,
might be lost if the sampling rate is 1 Hz instead of 20Hz. If 5
per cent of information loss is the threshold, a sampling rate
higher than 0.8Hz can be acceptable, if EIL is considered. If all
MILs need to be under 5 per cent for importation loss, then the
2Hz sampling rate might be the lowest sampling rate to meet
the information loss threshold.
Figure 7 presents the final results quantifying various

information loss indicators and different sampling rates. The
results show that different indicators have different levels of
information loss at a given sampling rate and the relationship is
nonlinear. At sampling rates higher than 2Hz, all MILs are
under 5 per cent for importation loss. The indicator of MIL2,
percentage of out-of-range observations, seems to be with
higher values than other MILs across sampling rates. This

Figure 6 Indirect detectability in different time intervals
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indicator may be critical for some purposes, e.g. crash
reconstruction and reporting. Therefore, for studies dealing
with crashes, especially crash reconstruction studies that are
highly sensitive to speed magnitude, higher sampling rates can
be beneficial. The curves, including the overall information loss
indicator, show that information loss becomes rather high
between at 1- and 2-Hz level.

Limitations

The data used in this study comes from a simulator driving
test, i.e. they are from a hypothetical but controlled test
environment. Having few test subjects is recognized as a
limitation, though it is not very germane to this study. The
data was sampled by 20Hz. It is possible that micro-driving
decisions between the 20-Hz time-stamp data points were
lost. This study assumes the chance of having micro-decision

changes within 0.05 s is very small, given a perception
reaction time of about 1 s. In the future, driving data sampled
at even higher sampling rates can be used to verify the results
of this study. The proposed indicators can be used for
analysis of information loss with any range of sampling
frequency.
The scope of this study is to develop the concept of MILs or

EILs that can be used to quantify the EIL when sampling
driving behavior data. This study introduced a limited number
of indicators, and more indicators can be developed to quantify
the information loss. In addition, the results of quantified
information loss may vary significantly across different traffic
conditions, e.g. urban and rural environments. The road
configurations would also have a significant impact on driving
behavior. Therefore, the recommended sampling rates for
collecting driving behavior data may need to be specified for
particular driving conditions of interest.

Table II Overall magnitude of information loss

Sampling rate
(Hz)

Time interval
(s)

Count of out-
of-range

observations

MIL2 –
percentage of
out-of-range
observations

(%)

MIL3 – ratio of
sampled to actual

range (%)

Observed
speed

deviation
(mph) (%)

MIL4 – relative
speed

deviation (%)

MIL1 – instantaneous
driving decision loss
(from Table I) (%)

EIL
(%)

10 0.1 0.008 0.42 100.00 0.001 0.01 0.00 0.11
4 0.25 0.100 2.00 99.37 0.005 0.05 0.09 0.69
2 0.5 0.442 4.42 98.11 0.020 0.23 0.40 1.73
1.3333333 0.75 1.010 6.73 96.87 0.045 0.52 0.87 2.81
1 1 1.754 8.77 95.71 0.076 0.87 1.46 3.85
0.8 1.25 2.677 10.71 94.68 0.115 1.24 2.17 4.86
0.6666667 1.5 3.847 12.82 93.38 0.160 1.66 2.99 6.02
0.5714286 1.75 5.050 14.43 92.40 0.208 2.00 3.89 6.98
0.5 2 6.345 15.86 91.66 0.258 2.35 4.83 7.85
0.4444444 2.25 7.848 17.44 90.65 0.316 2.78 5.84 8.85
0.4 2.5 9.441 18.88 89.53 0.371 3.11 6.87 9.83
0.3636364 2.75 11.216 20.39 88.63 0.426 3.45 7.90 10.78
0.3333333 3 13.172 21.95 87.70 0.491 3.88 8.97 11.78
0.2 5 30.058 30.06 81.42 0.974 6.15 17.87 18.17
0.1 10 81.855 40.93 71.10 2.088 10.57 35.86 29.07
0.0666667 15 139.545 46.51 64.73 3.131 14.52 48.80 36.28

Figure 7 Extent of information loss with different sampling rates
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Conclusions

The key question investigated in this study is: what sampling
rates are appropriate to capture micro-or short-term driving
decisions? Oversampling can result in noisy data, and waste
storage and processing resources. Undersampling can result in
loss of information about important instantaneous driving
decisions. This study developed indicators of information loss
and quantified their relationship with sampling rates. It
discussed driving behavior information from two angles:
instantaneous driving decisions and speed magnitudes. Four
main indicators were created to quantify the magnitudes of
driving behavior information loss:
� MIL1 – instantaneous driving decision loss (combined

direct and indirect “detectability”);
� MIL2 – percentage of out-of-range observations;
� MIL3 – ratio of sampled-to-actual range; and
� MIL4 – relative speed deviation from linear interpolation

of sampled data (based on observed speed deviation over
interpolated speed).

These indicators quantify the EIL. With these four indicators,
the overall MIL index was generated by equally weighting
them. The index, termed by EIL, simply tells us how much
informationmight be lost, given a sampling rate.
The results show that shorter time intervals (i.e. higher

sampling rates) are associated with larger direct detectability
of instantaneous driving decisions. In other words, there is a
smaller chance of having cases with micro-driving decisions
between two sampled data points. Drivers typically keep
constant acceleration/deceleration rates during a short time.
Specifically, for the time interval 1 s (i.e. 1-Hz sampling
rate), the direct detectability is 88.90 per cent. The large
possibility of no micro-decision in 1 s may be because of the
driver reaction time. The reaction time includes the time for
driver perception, identification, judgment and reaction
(TRB, 1998). The whole process usually takes more than 1 s
(AASHTO, 2011). This study further observed cases of one
micro-driving decision made within a particular time
interval and discussed the possibility of detecting such
micro-driving decisions. Through defining the six possible
micro-driving decision patterns, the study found the four of
six patterns include the micro-driving decisions that can be
detected indirectly by using the sampled data points. These
four patterns dominate the cases in short time intervals (less
than 3 s). Specifically, the indirect detectability for 1-s time
interval (or 1-Hz sampling rate) is around 93.92 per cent.
The feasibility of detecting micro-driving decisions
combines direct detectability and indirect detectability.
Thus, the feasibility of detecting micro-driving decisions by
1-Hz data are 89.90 per cent 1 9.20 per cent � 93.92 per
cent = 98.54 per cent, and 100 per cent � 98.54 per cent =
1.46 per cent of information about micro-decisions (MIL1)
will be lost by 1-Hz data.
The indicators of information loss magnitude reveal that

smaller sampling rates or longer time intervals are related to
more missing data points because of their too large or too small
values. Though there are some data points out of the micro-
speed ranges (about 8.77 per cent of points out of the micro-
ranges for 1-Hz data, MIL2), these points do not deviate
broadly when sampling rates are equal to or higher than 1Hz.

Specifically, the ratio of sampled to actual ranges (MIL3) is
95.7 per cent for 1-Hz data. And 1-Hz data has an average
speed deviation of about 0.076mph. The small deviation
supports the assumption that driving behavior within 1 s shows
nearly constant acceleration (EPA, 2013). Further, the relative
speed deviation (MIL4) of 1-Hz data to 20 Hz is around 0.87
per cent. With four indicators of MILs, the overall EIL can be
calculated. For 1-Hz sampling rate, the EIL is about 3.85 per
cent.
This study proposed indicators to quantify the MIL

regarding the longitudinal driving behavior. The indicators can
be used individually or combined to create an index. The
calculation results are not intended to be directly used by all
other driving behavior studies, as the results may vary
significantly across different traffic conditions and driver
behaviors. The trends of MILs and EIL may be useful to
researchers to understand how information might be lost
because of the low sampling rates. The calculation process can
be easily replicated by other researchers who aim to determine
an appropriate sampling rates for their study data collection, or
to evaluate the extent of information loss for driving behavior
data that have been collected at a known sampling rate. The
results show that lower sampling rates are associated with
greater information loss, but the relationship is nonlinear. This
study contributes by developing a methodology to quantify the
relationship between sampling rates and information loss.
Depending on the objective of their study, researchers can
choose the appropriate sampling rate necessary to get the right
amount of accuracy. For some studies, e.g. quantifying energy
consumption or emissions, 2-Hz sampling rate may be
sufficient, whereas for safety studies, higher sampling rates may
be required. In addition, different indicators may capture
different aspects of the information loss while sampling data to
study driving behavior. The indicators introduced in this study
are for longitudinal driving behavior. Indicators for lateral
behavior such as steering angle need to be developed in future
research.
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