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Abstract
Purpose – Feature selection is crucial for machine learning to recognize lane-change (LC) maneuver as there exist a large number of feature
candidates. Blindly using feature could take up large storage and excessive computation time, while insufficient feature selection would cause poor
performance. Selecting high contributive features to classify LC and lane-keep behavior is effective for maneuver recognition. This paper aims to
propose a feature selection method from a statistical view based on an analysis from naturalistic driving data.
Design/methodology/approach – In total, 1,375 LC cases are analyzed. To comprehensively select features, the authors extract the feature
candidates from both time and frequency domains with various LC scenarios segmented by an occupancy schedule grid. Then the effect size
(Cohen’s d) and p-value of every feature are computed to assess their contribution for each scenario.
Findings – It has been found that the common lateral features, e.g. yaw rate, lateral acceleration and time-to-lane crossing, are not strong features
for recognition of LC maneuver as empirical knowledge. Finally, cross-validation tests are conducted to evaluate model performance using metrics of
receiver operating characteristic. Experimental results show that the selected features can achieve better recognition performance than using all the
features without purification.
Originality/value – In this paper, the authors investigate the contributions of each feature from the perspective of statistics based on big
naturalistic driving data. The aim is to comprehensively figure out different types of features in LC maneuvers and select the most contributive
features over various LC scenarios.
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1. Introduction

Lane-change (LC) accidents are accounting for about 4-10 per
cent of all crashes (Barr and Najm, 2001) and 1.5 per cent of all
motor vehicle fatalities in the USA (N. H. T. S. Administration,
2015). With the development of advanced driver assistance
systems, functions such as lane departure warning (LDW) and
lane-change assist (LCA) hit the market to help avoid LC
related accidents (Visvikis et al., 2008). One of the key problems
is how to correctly recognize driver’s LC maneuver in advance.
When an improper LC maneuver is occurring, the driver
assistance systems should either give warnings or assist this
person aborting themaneuver.
Supervised learning is popularly used for recognizing LC

maneuvers. This method raise the challenges of how to select
the most contributive or efficient features. Longitudinal

features [e.g. time to collision, TTC, (Liebner et al., 2013)
(Peng et al., 2015), longitudinal acceleration] and lateral
features [e.g. steering angle (Xu et al., 2012), yaw rate
(Sivaraman and Trivedi, 2014; Doshi et al., 2011), lateral
acceleration (Boubezoul et al., 2009; Kasper et al., 2012)] have
been used, with the assumption that they are strong enough for
LC maneuver recognition by either intuition or empirical
knowledge; however, this assumption is still hanging on and yet
comprehensively studied.
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In general, LC maneuver can be either discretionary or
mandatory. A mandatory LC will occur when a driver must
leave a lane due to a lane drop or bypass a blockage, etc. A
discretionary lane change occurs when a driver prefers a
more efficient adjacent lane (J2944, 2013), for example,
passing a slow-moving leading vehicle to maintain the
current speed (Lee et al., 2004). So it would require
different weighted features to recognize LC maneuver with
discretionary and mandatory LC cases. Leonhardt and
Wanielik evaluated the effects of various features in different
LC driving scenarios (Leonhardt and Wanielik, 2017) and
showed that even for the same feature, the weight of
overtaking a slow vehicle and merging is different. Thus,
feature selection process should also take LC scenarios into
account.
In this paper, we propose a feature selection method for

predicting driver LC behavior. Our aim is to comprehensively
figure out different types of features in LC maneuvers and
select the most contributive features over various LC scenarios.
The main contribution of our work can be summarized as
follows:
� presenting a feature selection method from the perspective

of statistics to investigate the statistical significance of each
feature based on big naturalistic driving data;

� both time-domain and frequency-domain features are
considered to fill in gaps in existing works on feature
selection; and

� taking different driving scenarios into consideration in the
feature extraction procedure to comprehensively evaluate
the extracted features.

The remainder of this paper is organized as follow. Section 2
reviews the related work of feature selection and LC maneuver
recognition. Section 3 describes how to model the contextual
traffic in each LC scenario. Section 4 details data processing
and feature extraction. Section 5 shows the results of feature
selection and model performance. Section 6 makes conclusion
and discussion.

2. Related works

2.1 Lane-Changemaneuver recognition
Machine learning techniques, such as support vector machines
(SVM) (Mandalia and Salvucci, 2005; Kumar et al., 2013),
Naive Bayes (NB), Decision Tree (DT), k-nearest neighbor
(KNN) (Lethaus et al., 2013), artificial neural networks (ANN)
(Peng et al., 2015) and Bayesian Networks (BN) (Kasper et al.,
2012; Li et al., 2016; Weidl et al., 2018), have been
implemented to recognize driver LC maneuvers based on a
well-trained classifier using labeled datasets. Then new data are
fed to the classifier to determine the classification of either LC
or LKmaneuver. In this way, data being classified as LCmeans
the driver at the moment is prone to make LC maneuver,
otherwise not.
Although most papers have made comparison work to show

their effectiveness, it is achieved by using the less contributive
features in their proposed model. To overcome this bias, we
evaluate model performance using the identical features – the
comprehensively selected features – and then give them a
relatively objective rate to evaluate their contribution for
maneuver recognition.

2.2 Feature selection
The goal of feature selection is to reduce the dimension of
training datasets by removing redundant information. In
general, feature selection methods can be grouped into filter
and wrapper methods. Filter methods analyze the intrinsic
properties of data, ranking and selecting features without
involving learning algorithms. On the contrary, the wrapper
method with learning algorithms would get involved to score a
given subset of features (Guyon et al., 2008). For wrapper
methods, the ranking of features can vary frommodel to model.
Here, we shall find the intrinsic properties of feature candidates
related to LC and select the most contributive features rather
than ranking and selecting features for a specific learning
approach. Therefore, the filter method was selected in this
paper.
For LCmaneuver recognition, the data collected from sensors

are time series data, and the properties of the features in the time
domain are the most frequently extracted (Liebner et al., 2013)
(Kasper et al., 2012). On the other hand, frequency-domain
features have already been used to recognize driver state, for
instance, the power spectrum features via wavelet transform were
selected for Belief networks (Hajinoroozi et al., 2015; Chen et al.,
2015). In other areas of time series recognition such as speech
recognition (Thomas et al., 2008) and anomaly detection (Zhang
et al., 2008), frequency-domain features play an important role.
In this paper, we consider the properties of the features in

both time domain and frequency domain to select the most
contributive features for LCmaneuver recognition.

2.3Modeling contextual traffic
To capture the most contributive features in each LC scenario,
we first model the contextual traffic of the ego vehicle. A
potential field diagram (Woo et al., 2016) composed of bubbles
with different dynamic sizes was used to describe the dynamic
relationship between the ego vehicle and its surrounding
vehicles. However, it is not an intuitive way for driving situation
analysis. Leonhardt and Wanielik (2017) developed a
probabilistic situation assessment model to judge the safety
state of the ego vehicle with its surrounding vehicles; however,
it only works as behavior recognitionmodel with a single input.
To easily describe the relationship between the ego vehicle

and its surroundings, one of the most popular approaches is to
segment the surrounding traffic into cell grids. The occupancy
state of each cell is represented by a binary value, i.e. occupied
or empty (Kasper et al., 2012; Do et al., 2017). We model
contextual traffic also based on the cell grid method which is
detailed in the next section.

3. Lane-Change scenario modeling

In Do et al. (2017), nine cells and 32 cases (25) were considered
in the driving contextual traffic. But the authors did not give the
specific boundary of the cells. Kasper and Weidl modeled the
cell by carrying the speed-dependent information when a cell
will be occupied or will become free (Kasper et al., 2012). But
they assumed that the vehicle can move unobstructed toward
certain cell, which cannot be satisfied in some situation where a
car wants to overtake the ego car. In this paper, we model the
cell grid by considering the dynamic relationship between the
ego car and the surrounding cars. A three-cell grid is used to
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model contextual traffic where the ego vehicle executes the LC
maneuver, for both left and right LCwith eight cases.
As limited by our on-board sensors, which can only detect

the traffic in front of the ego vehicle, the traffic situation on
back of the ego vehicle is not considered. Despite such
limitation, our method of modeling contextual traffic can be
extended to more cell grids which can include the traffic on
back of the ego vehicle. Here we only model the contextual
traffic in front of the ego vehicle as is depicted in Figure 1(a).
We adopt the theory presented in Karim et al. (2013) to

define the middle cell (cellm) and theory in Kesting and Treiber
(2013) to define the left (celll)/right cell (cellr). The dynamic
length of each cell is s�1, s

�
2, s

�
3, as shown in Figure 1(a). The

length of cellm is defined by a mean safe time gap (MSTG) in
Karim et al. (2013) as:

MSTG ¼ BTEV –BTOV 1 RT (1)

whereBTEV andBTOV are the brake time of the ego vehicle and
object vehicle 1, respectively, RT is the driver’s perception-
reaction time and for certain vehicle, the BT is calculated by an
empirical equation:

BT ¼ 0:02321 � v – 0:08785 (2)

where v is the vehicle speed and thus:

BTEV –BTOV ¼ 0:02321 � _R (3)

where _R is the range rate between the ego vehicle and object
vehicle 1. So, the dynamic length of s�1 can be written as:

s�1 ¼ v �MSTG (4)

where v is the longitudinal speed of the ego vehicle.

We define celll and cellr based on the Intelligent Driver Model
(IDM) (Kesting and Treiber, 2013). Here, the safe distance is
derived from the leading vehicle, driving at a desired speed, or
preferring accelerations to be within a comfortable range.
Additionally, kinematic aspects are taken into account, such as
the quadratic relation between braking distance and speed.
First, on the left and right lane, desired distances on the left (s�l )
and right (s�r ) lane are defined respectively as:

s�l ¼ s0 1max 0; v � T 1
_Rl � Rl

2 � ffiffiffiffiffiffiffiffiffiffiffiffiffi
a� � b�p

 !
(5)

s�r ¼ s0 1max 0; v � T 1
_Rr � Rr

2 � ffiffiffiffiffiffiffiffiffiffiffiffiffi
a� � b�p

 !
(6)

where s0 is the minimum (bumper-to-bumper) gap, T is the safe
time gap, a� and b� are acceleration and comfortable deceleration.
Rl, _Rl and Rr, _Rr are the range and range rate the ego vehicle with
object Vehicle 2 and Vehicle 3 in Figure 1(b), respectively. The
dynamic terms _Rl � Rl= 2 � ffiffiffiffiffiffiffiffiffiffiffiffiffi

a� � b�p� �
and _Rr � Rr= 2 � ffiffiffiffiffiffiffiffiffiffiffiffiffi

a� � b�p� �
imply the intelligent braking strategy for LLCandRLCcases.
Second, based on the desired distance on the left (s�l ) and right

(s�r ) lane, the dynamic safety distance, namely, the length of s�2
and s�3, can be written as:

s�2 ¼ s�lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s�l
Rl

� �2
– Da1 abias

az

r (7)

s�3 ¼ s�rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s�r
Rr

� �2
– Da1 abias

az

r (8)

where az is the longitudinal acceleration of the ego vehicle, Da
is the LC threshold and abias represents the asymmetric
property of LLC andRLC.
All the values of the parameters in equations (1) and (5)-(8)

are listed in Table I (Kesting and Treiber, 2013), and the
occupancy states of cells can be given as (Figure 2):

cellm ¼ 0 if R � s�1
cellm ¼ 1 if R < s�1

(
(9)

Figure 1 Illustration of the occupancy cells of LC scenarios
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Table I Values of the defined cell grid

Parameter Value

RT 1.9 s
T 1.0 s
s0 2 m
a* 1.0 m/s2

b* 1.5 m/s2

Da 0.1 m/s2

abias 0.3 m/s2
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cell1 ¼ 0 if Rl � s�2
cell1 ¼ 1 if Rl < s�2

(
(10)

cellr ¼ 0 if Rr � s�3
cellr ¼ 1 if Rr < s�3

(
(11)

Depending on the occupancy state of cell grid, eight scenarios
(four scenarios for LLC) can be generated, as depicted in
Figure 3:
� LLC Scenario 0_0: When the ego vehicle makes LLC,

there are no object vehicles on both cellm and celll;

� LLC Scenario 0_1: When the ego vehicle makes LLC,
there is no object vehicle on celll but cellm is occupied;

� LLC Scenario 1_0: When the ego vehicle makes LLC,
there is no object vehicle on cellm but celll is occupied;

� LLC Scenario 1_1: When the ego vehicle makes LLC, both
cellm and celll are occupied;

� RLC Scenario 0_0: When the ego vehicle makes RLC,
there are no object vehicles on both cellm and cellr;

� RLC Scenario 0_1: When the ego vehicle makes LLC,
there is no object vehicle on cellm but cellr is occupied;

� RLC Scenario 1_0: When the ego vehicle makes LLC,
there is no object vehicle on cellr but cellm is occupied; and

� RLC Scenario 1_1: When the ego vehicle makes LLC, both
cellm and cellr are occupied.

Here, the name of the LC scenarios such as Scenario 0_1 and
Scenario 1_0 is in accordance with the binary states of the
occupancy cells illustrated in Figure 3.

4. Data processing and feature extraction

4.1 Naturalistic driving data
The naturalistic driving data that used in this paper are from the
project of the Safety PilotModel Deployment (SPMD).
The on-road test includes multi-modal traffic, hosting

approximately 3,000 vehicles equipped with vehicle-to-vehicle
(V2V) communication devices (Henclewood et al., 2014). The
data sets we used were extracted from 20 vehicles, driving in the
field test including 75 miles of roadway, see Figure 3. Roads
that marked as yellow are the route SPMD vehicle driving.
Drivers voluntarily joined in SPMD project. They drove the
SPMD vehicle completely based on their own driving styles
with no restriction on their driving behaviors. Each SPMD
vehicle was equipped with data acquisition systems (DAS) such
as CAN and GPS and vision system such as Mobileye. All the
signals coming from different DAS were time-synchronized
and were recorded at 10Hz.
Finally, 1,375 LC cases (761 LLC and 614 RLC) were

analyzed. The distribution of the LC cases with respect to the
corresponding LC scenarios in Figure 3 can be seen in Table II.
We can see that for LLC, most of the cases took place in LLC
Scenario 0_0 (365 cases) and LLC Scenario 0_1 (354 cases). For
RLC, the dominating cases are RLC Scenario 0_0 (371 cases)
and RLC Scenario 1_0 (214 cases). This result implies that
when the driver want to execute left/right LC, he/she tends to
wait until the destination lane being empty (celll/cellr is
unoccupied).

Figure 2 Illustration of the occupancy cells LC scenarios

LLC Scenario 0_0 LLC Scenario 0_1 LLC Scenario 1_0 LLC Scenario 1_1 

  

Notes: (a) Left lane-change scenarios; (b) Right lane-change
scenarios

RLC Scenario 0_0 RLC Scenario 0_1 RLC Scenario 1_0 RLC Scenario 1_1 

  

(a)

(b)

Figure 3 On-road test area of SPMD (Bezzina and Sayer, 2014)

Table II Total amount of LC cases

LC Type Scenario Amount

LLC 0_0 365
0_1 354
1_0 15
1_1 27

RLC 0_0 371
0_1 10
1_0 214
1_1 16
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4.2 Feature extraction
4.2.1 Original features from on-board sensors
Vehicle yaw rate and lateral acceleration are usually used as strong
features of vehicle lateral behavior. Together with longitudinal
acceleration, the above signals are necessary for recognition,
prediction and modeling vehicle lateral behaviors (Leonhardt and
Wanielik, 2017; Higgs and Abbas, 2015; Li et al., 2015; Luo et al.,
2016). Here we also choose the following signals directly collected
fromon-board sensors as our candidate features:
� yaw Ratet = yaw rate of the ego vehicle at time t;
� azt = longitudinal acceleration of the ego vehicle at

time t; and
� axt = lateral acceleration of the ego vehicle at time t.

4.2.2 Compound features
Time-to-collision (TTC) is the time required for two vehicles
to collide if they continue at their present speeds on the same
path. It is usually used to evaluate collision risk (Kusano and
Gabler, 2011). If a small TTC indicates the driver may execute
LC to overtake the slow leading vehicle. Thus the TTC can be
regarded as a valuable feature to recognize LC maneuver
(Kasper et al., 2012). Time-to-lane crossing (TLC) represents
the time available for a driver until the moment at which any
part of the vehicle reaches one of the lane boundaries
(Godthelp et al., 1984). It is a parameter to estimate if the ego
vehicle is going to cross the lane. Based on (J2944, 2013), TTC
andTLC are given by.
� TTC with the object vehicle in front on the current lane

(TTCt) at time t:

TTCt ¼ R
_R

(12)

where R and _R [in Figure 1(b)] are the range and the range rate
between the front edge of the ego vehicle and rear edge of the
closest object vehicle in the same traveling path as the ego
vehicle, respectively. Here, what needs to be mentioned is that
TTC is only calculated for the LC case when Cellm = 1,
because Cellm = 0means there is no vehicle in the cell.
� TLC at time t (TLCt):

TLCt ¼ dx
vx

(13)

where dx is lateral distance between the front wheel and the
lane boundary of the ego vehicle and vx is the lateral speed.
In case that _R and vx are equal to zero, equations (12)

and (13) approach infinity, we use the inverse of TTC�1
t

and TLC�1
t instead.

4.2.3 Time-Window features
Vehicle on-board signals are time series, using time-window
(TW) for feature extraction is effective to capture the
information during the past few seconds (Thissen et al., 2003;
Salfner and Malek, 2007). In the case of LC recognition,
different length of TWbetween 1 and 5 s are selected for feature
extraction (Mandalia and Salvucci, 2005). To capture the
properties of time series, statistical variables (mean, standard
deviation, maximum, minimum and median) are calculated
within each TW (Li et al., 2015) as is described in Table III, i.e.

feature number 6-80. The number of the top right corner of the
feature is the length of TW, so ‘5’ in mean yaw5

t means 5 s
length of TW and ‘4’ inmean yaw4

t represents 4 s length of TW,
see feature # 6 and# 7 as examples.

4.2.4 Frequency-domain features
Frequency-domain feature extraction has already been used in
anomaly detection (Chen et al., 2015; Chandola et al., 2009).
Fast Fourier transform (FFT) was used to transform time-
domain signals into frequency-domain (Heckbert, 1995). The
maximum value of FFT coefficients within TW is a good
indicator to represent the property of frequency signals
(Mörchen, 2003). The description of the frequency-domain
features are listed in Table III, with feature number 81-95.

4.3 Labeling LC datasets
To evaluate extracted features, both LC and LKdatasets should
be labeled. Take LLC for example, as shown in Figure 4, the
ego vehicle (blue) intends to overtake the slow vehicle (red) by
left lane change. The moment that the left wheel of the ego car
just crosses the central dotted line is marked as the initial LC
time t0. Based on the study in Salvucci and Liu (2002), normally
drivers tend to start LC maneuver approximately 5 s before
actual LC. Thus in this paper, time series between t0 and 5 s
before are labeled as LC behavior. To ensure LK data sets are
separation of LC data sets, LK behavior are labeled between 10
and 15 s prior to t0. It is the sameway to label RLCdata sets.

5. Method

5.1 Feature evaluation
In the view of statistics, the p-value is commonly used to test
whether there is statistical significance between two groups. In
our case, if there is statistical significance between LC data sets
and LK data sets, the extracted features are probably good
indicators to classify LC and LK maneuvers. However, only
using p-value to evaluate significance is insufficient (Sullivan
and Feinn, 2012). The effect size, such as Cohen (1988), is also
used as an important evaluationmetric (Cohen, 1990):

d ¼ jM1 –M2jffiffiffiffiffiffiffiffiffiffiffiffi
S2
1 1S2

2
2

q (14)

where:
� d = Cohen’s index;
� M1 = mean of the first group data;
� M2 = mean of the second group data;
� S1 = standard deviation of the first group data; and
� S2 = standard deviation of the second group data.

To define significance level, Cohen defines the effect class as
follow (Cohen, 1992):
� d< 0.5 = small effect;
� 0.5� d< 0.8 =medium effect; and
� d� 0.8 = large effect.

For each LC maneuver, we label LC and LK data sets and
calculate both Cohen’d and p-value for each feature. Then for
all the LC cases, we average the Cohen’d and p-values to get the
mean for each feature in each scenario.
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5.2Models used for feature evaluation
To test if the selected features have advantages for machine
learning techniques over all features, the SVM, NB, DT and
KNN are chosen to evaluate classification performance. We

then built the above learning-based models using the Statistics
andMachine Learning Toolbox[1]. Here, the SVMmodel was
set with a Gaussian kernel function, and NB with Kernel
smoothing density estimation method, DT with the default
setting and KNNusing empirical prior with k = 1. The datasets
used for training the machine learning models are the same,
which are labeled by themethod presented in Section 4.3.

6. Results and analysis

6.1 Analysis from effect size and p value
All the evaluation results (Cohen’ d and p-value) for each
feature can be found in Table AI. A p-value smaller than 0.05

Table III Description of the extracted features

# Feature name Feature description

1 yaw Ratet yaw rate of ego vehicle at time t
2 azt az of ego vehicle at time t
3 axt ax of ego vehicle at time t
4 TTC�1

t TTC�1
t at time t

5 TLC�1
t TLC�1

t at time t
6 mean yaw5

t mean of yawRate in TW 5 s
7 mean yaw4

t mean of yawRate in TW 4 s
8-10 ..

.
mean yawt in TW 3 s, 2 s, 1 s

11 std yaw5
t std of yawRate in TW 5 s

12-15 ..
.

std_yawt in TW 4 s, 3 s, 2 s, 1 s
16 max yaw5

t maximum of yawRate in TW 5 s
17-20 ..

.
max yawt in TW 4 s, 3 s, 2 s, 1 s

21 min yaw5
t minimum of yawRate in TW 5 s

22-25 ..
.

min_yawt in TW 4 s, 3 s, 2 s, 1 s
26 med yaw5

t median of yawRate in TW 5 s
27-30 ..

.
med_yawt in TW 4 s, 3 s, 2 s, 1 s

31 mean az5t mean of the az in TW 5 s
32-35 ..

.
mean_azt in TW 4 s, 3 s, 2 s, 1 s

36 std az5t standard deviation of az in TW 5 s
37-40 ..

.
std_azt in TW 4 s, 3 s, 2 s, 1 s

41 max az5t maximum of az in TW 5 s
42-45 ..

.
max_azt in TW 4 s, 3 s, 2 s, 1 s

46 min az5t minimum of az in TW 5 s
47-50 ..

.
min_azt in TW 4 s, 3 s, 2 s, 1 s

51 med az5t median of az in TW 5 s
52-55 ..

.
med_azt in TW 4 s, 3 s, 2 s, 1 s

56 mean ax5t mean of the ax in TW 5 s
57-60 ..

.
mean_axt in TW 4 s, 3 s, 2 s, 1 s

61 std ax5t standard deviation of ax in TW 5 s
62-65 ..

.
std_axt in TW 4 s, 3 s, 2 s, 1 s

66 max ax5t maximum of ax in TW 5 s
67-70 ..

.
mean_axt in TW 4 s, 3 s, 2 s, 1 s

71 min ax5t minimum of ax in TW 5 s
72-75 ..

.
min_axt in TW 4 s, 3 s, 2 s, 1 s

76 med ax5t median of ax in TW 5 s
77-80 ..

.
med_axt in TW 4 s, 3 s, 2 s, 1 s

81 max F yaw5
t max yawRate FFT coefficients in TW 5 s

82-85 ..
.

max_F_yawt in TW 4 s, 3 s, 2 s, 1 s
86 max F az5t max az FFT coefficients in TW 5 s
87-90 ..

.
max_F_azt in TW 4 s, 3 s, 2 s, 1 s

91 max F ax5t max ax FFT coefficients in TW 5 s
92-95 ..

.
max_F_axt in TW 4 s, 3 s, 2 s, 1 s

Figure 4 Data labeling for LC and LK behaviors
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can be regarded as having statistical significance and a Cohen’s
d value larger than 0.8 has large effect level (Cohen, 1992). By
following this two criterion, we mark each feature with
Cohen’ d larger than 0.8 and p-value smaller than 0.05 as red in
Table AI. The red-marked features have great influence on the
corresponding LC maneuver (LLC or RLC), and thus can be
selected as strong features for LC maneuver recognition.
Overall, based on the features marked as red, we find the
following:
� Although some features (p < 0.05) have shown statistical

significance (marked as blue), they have only medium or
small effect size (Cohen’ d< 0.8). This result also coincides
with that only using p-value to evaluate statistical
significance is not enough (Sullivan and Feinn, 2012);

� Original features of yawRatet (#1), azt (#2) and axt (#3)
and compound feature TLC�1

t (#5) are not strong
features for LLC case with no items marked as red. For
RLC, only azt and TLC�1

t in RLC Scenario 0_1 can be
regarded as strong features. This implies that the common
empirical knowledge of using these features is not that
much convincing.

� We mentioned that TTC�1
t is only calculated when the

front cell of the ego vehicle is occupied by an object
vehicle (Cellm = 1). TTC�1

t is marked as a strong feature
in the LLC case, which demonstrates that the potential of
rear-end collision does influence drivers’ LC decision. In
many research, a hypothesis – if the driver follows a
leading vehicle which is too slow, he/she would probably
maneuver a LC to overtake the slow leading vehicle – was
made. This analysis from naturalistic driving data proves
that this hypothesis is reasonable.

� Features #56-#60, which refer to mean_ax, are the least
important features for LC maneuver recognition, with no
itemmarked as red.

� To analyze the TW features (#6-#95), we take the marked
strong features in LLC Scenario 0_0 and LLC Scenario 0_1
for instance. Here, we segment the Table vertically with 5
features in a group, e.g. features.

Features #6-#10 are related to the same feature mean_yaw but
with different TW from 5 to 1 s, and so on. The detailed
illustration can is shown in Table AI, where the features with
the largest Cohen’d and the smallest p-value (marked with ‘s’

and ‘t’, respectively) demonstrate that they have the strongest
effect on LC. From these peak and valley values we find that
features with the largest Cohen’ d are also likely to have the
smallest p-values, except for Feature #31 and #32 in LLC
Scenario 0_0. We select the final features for each scenario
based on the marked peak and valley features, and for the
special case like feature #31 and #32, the features with large
Cohen’d (e.g. #31) are selected.

6.2 Final selected features for each LC scenario
Based on the marked features and results, the final selected
features in each LC scenario are listed in Table IV. It can be
found that different LC scenarios have different features sets.
The number of selected features from all 95 features for each
LC scenario ranges from 8 to 16. There is no feature eligible
for all LC scenarios. Only using original features and
compound features (#2, #4, #5) are far less enough, because

no such kinds of features have been selected at all in LLC
Scenario 0_0 and LLC Scenario 1_0, RLC Scenario 0_0, and
RLC Scenario 1_0.
Although original features related to vehicle’s lateral

movement (yawRatet (#1), azt (#2) and axt (#3)) are not
contributive as expected, their corresponding TW features
have shown large effect sizes. This implies that the property of
the original features within certain TW carries more
important information regarding to LC maneuvers. In
addition, frequency-domain features do have a contribution
as expected, with nearly at least one feature falls into the
strong feature set (the exception is LLC Scenario 0_1 with no
frequency-domain feature eligible). In what follows, we will
use these selected features to train models and evaluate their
performance.

6.3 Performance evaluation using the selected features
To test if the selected features can really improve model
performance, we compare the classification results of
different models trained with the selected features in
Table IV (termed as `Selected’) and all features (termed as
‘All Features’). Data sets used for training are the same as
what we used for calculating Cohen’d and p-value. To
guarantee that the training data and testing data are disjoint, a
cross-validation (CV) method is used to test the performance
of these models. The datasets are evenly divided into ten
folds. Nine folds are used to train the models and the
remaining is used to test the models.
The receiver operating characteristic (ROC) curve is used to

access model performance as it has been widely used as a tool to
illustrate the performance of binary classifiers by considering
the true positive rate (TPR) and false positive rate (FPR) over
different thresholds settings (Lethaus et al., 2013; Morris et al.,
2011). TPR and FPR are defined as follows:

TPR ¼ TP
TP1FN

FPR ¼ FP
TN1FP

(15)

where TP, TN, FP, FN are true positives, true negatives, false
positives and false negatives, respectively. A simple way to
compare different classifiers is to calculate the value of area
under curve (AUC) with a value ranging from 0 to 1. A larger
AUC value indicates better performance. All ROC curves are
illustrated in Figures 6 and 7. The corresponding AUC values
are listed in Table V. Figure 6 demonstrates the classification
performance of each classification model in different LLC
scenarios. The blue lines are the ROC curves of using selected
features for training while the red lines are using all features.
Figure 7 represents the same content as Figure 6 but for RLC
scenarios (Figure 5).
In Table V, a comparison is made between all features and

selected features for each classification model in each LC
scenario. We denote ‘;’ as the performance deterioration of
using selected features compared with using all features. The
improvement in percentage is also shown in Table V. Finally,
we find the following results:
� KNNperforms very good in all LC scenarios with AUC values

greater than 0.95, so does DT except for the performance in
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LLC Scenario 0_0 with all features (AUC = 0.82). With this
exception, DT can significantly improve the classification
performance from 0.82 to 0.98 (an increase of 19.5 per cent)
by using the selected features. For DT, using selected features
only shows tiny deterioration (1.0 per cent) in LLC Scenario
1_1 andRLCScenario 1_1.

� For SVM, it can greatly improve the classification
performance (performance increase between 4.2 and 13.6

per cent) by using the selected features, compared with
using all features, but only show declination in LLC
Scenario 0_1.

� NB represents different pictures. Using selected features
cannot improve model performance, compared with
using all features (no improvement in all LLC scenarios),
except for in RLC Scenario 0_1 and RLC Scenario 1_1
(Figure 6).

Table IV Final selected strong features for each LC scenario

# LLC Scenario RLC Scenario
0_0 0_1 1_0 1_1 0_0 0_1 1_0 1_1

Feature d p d p d p d p d p d p d p d p

Selected
Amount

12 10 11 11 8 16 11 13

2 azt – – – – – – – – – – 0.96 0.04 – – – –

4 TTC�1
t – – 0.92 0.04 – – 1.18 0.01 – – – – – – 1.18 < 0.01

5 TLC�1
t – – – – – – – – – – 0.82 0.02 – – – –

6 mean yaw5
t 1.02 0.03 – – – – 1.54 0.04 0.92 0.04 1.29 0.04 0.96 0.04 1.54 < 0.01

7 mean yaw4
t – – 0.98 0.04 1.14 < 0.01 – – – – – – – – – –

11 std yaw5
t – – 1.05 0.03 – – – – 1.01 0.03 – – 1.02 0.03 0.98 0.03

12 std yaw4
t – – – – – – 1.03 0.01 – – – – – – – –

13 std yaw3
t 0.99 0.04 – – – – – – – – 1.60 < 0.01 – – – –

16 max yaw5
t 1.00 0.04 – – – – – – 0.97 0.03 – – 0.95 0.04 – –

17 max yaw4
t – – 0.97 0.03 – – 1.36 0.03 – – – – – – – –

18 max yaw3
t – – – – – – – – – – – – – – 1.40 < 0.01

21 min yaw5
t – – 0.95 0.03 – – – – 0.98 0.04 1.10 0.02 1.06 0.02 1.38 < 0.01

22 min yaw4
t 1.03 0.03 – – – – 1.20 0.04 – – – – – – – –

23 min yaw3
t – – – – 1.04 0.03 – – – – – – – – – –

26 med yaw5
t 0.92 0.04 – – – – – – – – – – 1.04 0.03 – –

27 med yaw4
t – – – – 0.95 < 0.01 – – – – – – – – – –

28 med yaw3
t – – – – – – – – – – – – – – 1.23 0.01

31 mean az5t 0.92 0.04 – – 0.87 0.01 – – – – 1.16 < 0.01 – – – –

32 mean az4t – – 0.95 0.04 – – – – – – – – 0.98 0.04 – –

36 std az5t 0.91 0.04 1.05 0.04 – – – – 0.91 0.04 0.85 0.02 0.94 0.04 – –

38 std az3t – – – – 1.23 < 0.01 – – – – – – – – 0.92 0.03
41 max az5t 0.98 0.04 – – – – – – – – – – 0.98 0.04 – –

42 max az4t – – 1.01 0.03 – – – – 0.95 0.04 – – – – – –

43 max az3t – – – – – – 0.85 0.04 – – – – – – – –

46 min az5t 0.93 0.03 0.90 0.04 – – – – 0.84 0.04 1.28 0.02 0.94 0.03 – –

50 min az1t – – – – – – 1.04 0.03 – – – – – – – –

51 med az5t 0.88 0.04 0.94 0.04 0.97 0.01 – – – – 1.01 < 0.01 – – 0.94 < 0.01
52 med az4t – – – – – – – – – – – – 1.00 0.04 – –

54 med az2t – – – – – – 0.91 0.03 – – – – – – – –

61 std ax5t – – – – 1.21 < 0.01 – – – – 1.16 0.02 – – – –

62 std ax4t – – – – – – 1.02 0.03 – – – – – – 1.02 0.01
66 max ax5t – – – – – – – – – – 1.13 0.01 – – – –

68 max ax3t – – – – 1.06 0.04 – – – – – – – – – –

71 min ax5t 0.94 0.04 – – – – – – – – 1.10 0.02 – – – –

72 min ax4t – – – – 0.99 < 0.01 – – – – – – – – 1.12 0.03
76 med ax5t – – – – – – – – – – 1.06 0.04 – – – –

81 max F yaw5
t – – – – – – – – – – 0.95 0.01 – – – –

82 max F yaw4
t – – – – 0.87 0.01 – – 0.88 0.04 – – – – 1.20 0.03

83 max F yaw3
t – – – – – – 1.14 0.04 – – – – – – – –

86 max F az5t 0.98 0.04 – – – – 0.83 0.02 – – 0.88 0.02 0.95 0.04 – –

87 max F az4t – – – – – – – – – – – – – – 0.86 0.04
91 max F ax5t – – – – – – – – – – – – – – 1.16 0.02
93 max F ax5t – – – – 1.18 < 0.01 – – – – – – – – – –

94 max F ax2t – – – – – – – – – – 1.11 < 0.01 – – – –
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7. Conclusion and future work
In this paper, a statistics-based feature selection method for
recognition of LC maneuver is proposed using naturalistic driving
data from the time domain and the frequency domain. The
extracted features include original features collected from on-board
sensors and compound features like TTC, TLC as well as time-
window features. Totally 95 features are extracted as candidate
features.We found that for different LC scenarios, the final selected
features are different. There is no feature being sufficient for all the
LC scenarios. In addition, features refer to vehicle lateralmovement

which are frequently being used as features regarding to LC, such as
yaw rate (yawRatet, #1), lateral acceleration (axt, #3) aswell asTLC
(TTC�1

t , #5), do not show statistical significance (except for
TTC�1

t in RLC Scenario 0_1). This counter-empirical result makes
it more worthwhile to do feature selection work rather than just
basedon empirical knowledge.
Finally, the classification performance by using the final

selected features in each LC scenario is compared to that
using all features. The result shows that except for the
relatively poor performance of Naive Bayes, the

Table V AUC values of comparison results with different models using the selected features and all features in each LC scenario

LLC Scenario 0_0 LLC Scenario 0_1 LLC Scenario 1_0 LLC Scenario 1_1
Feature type SVM NB DT KNN SVM NB DT KNN SVM NB DT KNN SVM NB DT KNN

All Features 0.90 0.85 0.82 0.96 0.92 0.85 0.94 0.99 0.88 0.94 0.99 0.98 0.93 0.97 0.99 0.98
Selected 0.99 0.81; 0.98 0.98 0.84; 0.78; 0.97 0.99 1 0.93; 0.99 1 0.99 0.96; 0.98; 0.99
Improvement (%) 10.0 �4.7 19.5 2.0 �8.6 �8.2 3.1 0 13.6 �1.0 0 2.0 6.4 �1.0 �1.0 1.0

RLC Scenario 0_0 RLC Scenario 0_1 RLC Scenario 1_0 RLC Scenario 1_1
All Features 0.93 0.83 0.92 0.97 0.92 0.93 0.97 0.96 0.94 0.87 0.91 0.97 0.95 0.94 0.99 0.96
Selected 0.97 0.75; 0.98 0.99 0.99 0.98 0.98 0.98 0.98 0.80; 0.98 0.99 0.99 0.95 0.98; 1
Improvement (%) 4.3 �9.6 6.5 2.0 7.6 5.3 1.0 2.0 4.2 �8.0 7.6 1.0 4.2 1.0 �1.0 4.1

Figure 5 ROC curves of comparison results with different models using the selected features and all features in LLC scenarios
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performance of SVM and Decision Tree, as well as KNN,
can be improved from different levels by using the selected
features in most LC scenarios compared with using all
features. Summarily, the high performance achieved by the
classification models using all features (95 features) is at the
expense of computation time and taking up large storage.
Considering the fact that using the selected features (nearly
only ten features) to train the models can still achieve the
same performance or even have significant improvement. In
future work, a series of on-road experiment will be
conducted to recognize LC maneuver to evaluate the
recognizing performance in real-time scenarios.

Note

1. Available at: www.mathworks.com/products/statistics.html

References

Barr, L. and Najm, W. (2001), “Crash problem characteristics
for the intelli- gent vehicle initiative”, Transportation Research
Board 80th AnnualMeeting.

Bezzina, D. and Sayer, J. (2014), “Safety pilot model
deployment: test conductor team report”, Report No. DOT
HS, vol. 812, p. 171.

Boubezoul, A., Koita, A. and Daucher, D. (2009), “Vehicle
trajectories classifica- tion using support vectors machines
for failure trajectory prediction”, 2009 International
Conference on Advances in Computational Tools for Engineering
Applications, IEEE, pp. 486-491.

Chen, L., Zhao, Y., Zhang, J. and Zou, J.Z. (2015), “Automatic
detection of alertness/drowsiness from physiological signals
using wavelet-based nonlinear features and machine
learning”, Expert Systems with Applications, Vol. 42 No. 21,
pp. 7344-7355.

Chandola, V., Banerjee, A. and Kumar, V. (2009), “Anomaly
detection”,ACMComputing Surveys, Vol. 41No. 3, p. 15.

Cohen (1988), “Statistical power analysis for the behavioral
sciences 2nd edn”.

Cohen, J. (1992), “A power primer”, Psychological Bulletin,
Vol. 112No. 1, p. 155.

Cohen, J. (1990), “Things i have learned (so far)”, American
Psychologist, Vol. 45No. 12, p. 1304.

Do, Q.H., Tehrani, H., Mita, S., Egawa, M., Muto, K. and
Yoneda, K. (2017), “Human drivers based active-

Figure 6 ROC curves of comparison results with different models using the selected features and all features in RLC scenarios

0 0.2 0.4 0.6 0.8
FPR

0.2

0.4

0.6

0.8

1

T
P

R
SVM

Selected
All Features

0 0.5 1
FPR

0

0.5

1

T
P

R

Naive Bayes

Selected
All Features

0 0.2 0.4 0.6 0.8
FPR

0.2

0.4

0.6

0.8

1

T
P

R

Decision Tree

Selected
All Features

0 0.2 0.4 0.6 0.8
FPR

0.2

0.4

0.6

0.8

1

T
P

R

KNN

Selected
All Features

0 0.2 0.4 0.6 0.8
FPR

0.2

0.4

0.6

0.8

1

T
P

R

SVM

Selected
All Features

0 0.2 0.4 0.6 0.8
FPR

0.2

0.4

0.6

0.8

1

T
P

R

Naive Bayes

Selected
All Features

0 0.2 0.4 0.6 0.8
FPR

0.2

0.4

0.6

0.8

1

T
P

R

Decision Tree

Selected
All Features

0 0.2 0.4 0.6 0.8
FPR

0.2

0.4

0.6

0.8

1

T
P

R

KNN

Selected
All Features

0 0.2 0.4 0.6 0.8
FPR

0.2

0.4

0.6

0.8

1

T
P

R

SVM

Selected
All Features

0 0.5 1
FPR

0

0.5

1

T
P

R

Naive Bayes

Selected
All Features

0 0.2 0.4 0.6 0.8
FPR

0.2

0.4

0.6

0.8

1

T
P

R

Decision Tree

Selected
All Features

0 0.2 0.4 0.6 0.8
FPR

0.2

0.4

0.6

0.8

1

T
P

R

KNN

Selected
All Features

0 0.2 0.4 0.6 0.8
FPR

0.2

0.4

0.6

0.8

1

T
P

R

SVM

Selected
All Features

0 0.2 0.4 0.6 0.8
FPR

0.2

0.4

0.6

0.8

1

T
P

R

Naive Bayes

Selected
All Features

0 0.2 0.4 0.6 0.8
FPR

0.2

0.4

0.6

0.8

1

T
P

R

Decision Tree

Selected
All Features

0 0.2 0.4 0.6 0.8
FPR

0.2

0.4

0.6

0.8

1

T
P

R

KNN

Selected
All Features

Notes: (a) RLC Scenario 0_0; (b) RLC Scenario 0_1; (c) RLC Scenario 1_0; (d) RLC Scenario 1_1 

(a) (b)

(c) (d)

Feature selection on lane-change maneuver recognition

Xiaohan Li, WenshuoWang, Zhang Zhang and Matthias Rötting

Journal of Intelligent and Connected Vehicles

Volume 1 · Number 3 · 2018 · 85–98

94

http://www.mathworks.com/products/statistics.html


passive model for automated lane change”, IEEE
Intelligent Transportation Systems Magazine, Vol. 9 No. 1,
pp. 42-56.

Doshi, A., Morris, B. and Trivedi, M. (2011), “On-road
prediction of driver’s intent with multimodal sensory cues”,
IEEEPervasive Computing, Vol. 10No. 3, pp. 22-34.

Godthelp, H., Milgram, P. and Blaauw, G.J. (1984), “The
development of a time- related measure to describe driving
strategy”, Human Factors: The Journal of the Human Factors
and Ergonomics Society, Vol. 26No. 3, pp. 257-268.

Guyon, I., Gunn, S., Nikravesh, M. and Zadeh, L.A. (2008),
Feature Extraction: foundations and Applications, Vol. 207,
Springer, Berlin.

Hajinoroozi, M., Jung, T.-P., Lin, C.T. andHuang, Y. (2015),
“Feature extraction with deep belief networks for driver’s
cognitive states prediction from EEG data”, 2015 IEEE
China Summit and International Conference on Signal and
Information Processing (ChinaSIP), IEEE, pp. 812- 815.

Heckbert, P. (1995), “Fourier transforms and the fast fourier
transform (fft) algorithm”, Computer Graphics, Vol. 2,
pp. 15-463.

Henclewood, D. Abramovich, M. and Yelchuru, B. (2014),
“Safety pilot model deployment-sample data environment
data handbook, v. 1.2”, USDOT Research and Technology
Innovation Administrations.

Higgs, B. and Abbas,M. (2015), “Segmentation and clustering
of car-following behavior: recognition of driving patterns”,
IEEE Transactions on Intelligent Transportation Systems,
Vol. 16No. 1, pp. 81-90.

J2944 (2013), “Operational definitions of driving performance
measures and statistics”, SAETechnical Paper, Tech. Rep.

Lee, S.E. Olsen, E.C. and Wierwille, W.W. (2004), “A
comprehensive examination of naturalistic lane-changes”,
Tech. Rep.

Liebner, M., Ruhhammer, C., Klanner, F. and Stiller, C.
(2013), “Generic driver intent inference based on
parametric models”, 2013 16th International IEEE
Conference on Intelligent Trans- portation Systems-(ITSC),
IEEE, pp. 268-275.

Karim, M.R., Saifizul, A., Yamanaka, H., Sharizli, A. and
Ramli, R. (2013), “Minimum safe time gap (mstg) as a new
safety indicator incorporating vehicle and driver factors”,
Journal of the Eastern Asia Society for Transportation Studies,
Vol. 10, pp. 2069-2079.

Kasper, D., Weidl, G., Dang, T., Breuel, G., Tamke, A.,
Wedel, A. and Rosenstiel, W. (2012), “Object-oriented
bayesian networks for detection of lane change maneuvers”,
IEEE Intelligent Transportation Systems Magazine, Vol. 4
No. 3, pp. 19-31.

Kesting, A. and Treiber, M. (2013), Traffic Flow Dynamics:
data, Models and Simulation, no. Book, Whole, Springer,
Berlin Heidelberg.

Kumar, P., Perrollaz, M., Lefevre, S. and Laugier, C. (2013),
“Learning-based approach for online lane change intention
prediction”, 2013 IEEE Intelligent Vehicles Symposium (IV),
IEEE, pp. 797-802.

Kusano, K.D. and Gabler, H. (2011), “Method for estimating
time to collision at braking in real-world, lead vehicle
stopped rear-end crashes for use in pre-crash system design”,

SAE International Journal of Passenger Cars – Mechanical
Systems, no. 2011-01-0576, Vol. 4 No. 1, pp. 435-443.

Leonhardt, V. and Wanielik, G. (2017), “Feature evaluation
for lane change prediction based on driving situation and
driver behavior”, 2017 20th International Conference on
Information Fusion (Fusion), IEEE, pp. 1-7.

Lethaus, F., Baumann, M.R., Köster, F. and Lemmer, K.
(2013), “A comparison of selected simple supervised
learning algorithms to predict driver intent based on gaze
data”,Neurocomputing, Vol. 121, pp. 108-130.

Li, G., Li, S.E., Liao, Y., Wang, W., Cheng, B. and Chen, F.
(2015), “Lane change maneuver recognition via vehicle state
and driver operation signals results from naturalistic driving
data”, 2015 IEEE Intelligent Vehicles Symposium (IV), IEEE,
pp. 865-870.

Li, X., Wang, W. and Rötting, M. (2016), “Bayesian network-
based identification of driver lane-changing intents using eye
tracking and vehicle-based data”, Advanced Vehicle Control:
Proceedings of the 13th Interna- tional Symposium on Advanced
Vehicle Control (AVEC’16), September 13-16, (2016), CRC
Press,Munich, pp. 229-304.

Luo, Y., Xiang, Y., Cao, K. and Li, K. (2016), “A dynamic
automated lane change maneuver based on vehicle-to-
vehicle communication”, Transportation Research Part C:
Emerging Technologies, Vol. 62, pp. 87-102.

Mandalia, H.M. and Salvucci, M.D.D. (2005), “Using
support vector machines for lane-change detection”, in
Proceedings of the Human Factors and Ergonomics Society
Annual Meeting, Vol. 49 No. 22, pp. 1965-1969. Sage, Los
Angeles, CA,

Mörchen, F. (2003), “Time series feature extraction for data
mining using dwt and dft”.

Morris, B., Doshi, A. and Trivedi, M. (2011), “Lane change
intent prediction for driver assistance: on-road design and
evaluation”, 2011 IEEE Intelligent Vehicles Symposium (IV),
IEEE, pp. 895-901.

N.H.T.S. Administration (2015), “Traffic safety facts
2015”, Traffic Safety Facts Research Note, et al. Vol. p. 170,
2017.

Peng, J., Guo, Y., Fu, R., Yuan, W. and Wang, C. (2015),
“Multi-parameter prediction of drivers’ lane-changing
behaviour with neural network model”, Applied Ergonomics,
Vol. 50, pp. 207-217.

Salfner, F. andMalek, M. “Using hidden semi-markov models
for effective online failure prediction”, 2007 26th IEEE
International Symposium on Reliable Distributed Systems
(SRDS 2007), IEEE, (2007), pp. 161-174.

Salvucci, D.D. and Liu, A. (2002), “The time course of a lane
change: driver control and eye-movement behavior”,
Transportation Research Part F: Traffic Psychology and
Behaviour, Vol. 5No. 2, pp. 123-132.

Sivaraman, S. and Trivedi, M.M. (2014), “Dynamic
probabilistic drivability maps for lane change and merge
driver assistance”, IEEE Transactions on Intelligent
Transportation Systems, Vol. 15No. 5, pp. 2063-2073.

Sullivan, G.M. and Feinn, R. (2012), “Using effect sizeor why
the p value is not enough”, Journal of Graduate Medical
Education, Vol. 4 No. 3, pp. 279-282.

Thissen, U., Van Brakel, R., De Weijer, A., Melssen, W. and
Buydens, L. (2003), “Using support vector machines for

Feature selection on lane-change maneuver recognition

Xiaohan Li, WenshuoWang, Zhang Zhang and Matthias Rötting

Journal of Intelligent and Connected Vehicles

Volume 1 · Number 3 · 2018 · 85–98

95



time series prediction”, Chemomet-Rics and Intelligent
Laboratory Systems, Vol. 69No. 1-2, pp. 35-49.

Thomas, S., Ganapathy, S. and Hermansky, H. (2008),
“Recognition of rever – berant speech using frequency
domain linear prediction”, IEEE Signal Processing Letters,
Vol. 15, pp. 681-684.

Weidl, G. Madsen, A.L. Wang, S. Kasper, D. and Karlsen, M.
(2018), “Early and accurate recognition of highway traffic
maneuvers considering real world application: a novel
framework using bayesian networks”.

Woo, H., Ji, Y., Kono, H., Tamura, Y., Kuroda, Y.,
Sugano, T., Yamamoto, Y., Yamashita, A. and Asama,
H. (2016), “Dynamic potential-model-based feature for
lane change prediction”, 2016 IEEE International
Conference on Systems, Man, and Cybernetics (SMC),
IEEE, pp. 000 838-000 843.

Visvikis, C., Smith, T., Pitcher, M. and Smith, R. (2008), “Study
on lane de- parture warning and lane change assistant systems”,
Transport Research Laboratory Project Rpt PPR, Vol. 374.

Xu, G., Liu, L., Ou, Y. and Song, Z. (2012), “Dynamicmodeling
of driver control strategy of lane-change behavior and trajectory
planning for collision prediction”, IEEE Transactions on
Intelligent Transportation Systems, Vol. 13No. 3, pp. 1138-1155.

Zhang, B., Georgoulas, G., Orchard, M., Saxena, A., Brown,
D., Vacht- sevanos, G. and Liang, S. (2008), “Rolling
element bearing feature extraction and anomaly detection
based on vibration monitoring”, 2008 16th Mediterranean
Conference on Control and Automation, IEEE, pp. 1792-1797.

Corresponding author
Xiaohan Li can be contacted at: xiaohan.li@mms.tu-
berlin.de

Feature selection on lane-change maneuver recognition

Xiaohan Li, WenshuoWang, Zhang Zhang and Matthias Rötting

Journal of Intelligent and Connected Vehicles

Volume 1 · Number 3 · 2018 · 85–98

96

mailto:xiaohan.li@mms.tu-berlin.de
mailto:xiaohan.li@mms.tu-berlin.de


Appendix. All the effect sizes regarding LLC and RLC for all extracted features are listed in Table AI.

Table AI Full-scale effect size of the features

LLC Scenario RLC Scenario
0_0 0_1 1_0 1_1 0_0 0_1 1_0 1_1

# d p d p d p d p d p d p d p d p

1 0.75 0.10 0.75 0.10 0.81 0.05 0.66 0.14 0.66 0.11 0.60 0.12 0.76 0.09 0.66 0.19
2 0.81 0.09 0.71 0.13 0.74 0.13 0.79 0.10 0.69 0.12 0.96 0.04 0.81 0.09 0.79 0.08
3 0.06 0.78 0.07 0.75 0.04 0.86 0.07 0.75 0.06 0.78 0.07 0.72 0.07 0.76 0.07 0.74
4 – – 0.92 0.04 – – 1.18 0.01 – – – – 0.84 0.06 1.18 <0.01
5 0.51 0.18 0.59 0.11 0.31 0.27 0.60 0.16 0.55 0.16 0.82 0.02 0.62 0.13 0.71 0.04
6 1.02s 0.03t 0.98 0.05 0.98 0.02 1.54 0.04 0.92 0.04 1.29 0.04 0.96 0.04 1.54 <0.01
7 0.97 0.06 0.98s 0.04t 1.14 <0.01 1.32 0.07 0.91 0.04 0.01 0.11 0.94 0.06 1.32 0.02
8 0.91 0.06 0.89 0.06 1.00 0.01 0.83 0.07 0.92 0.05 0.72 0.03 0.85 0.07 0.83 0.01
9 0.86 0.06 0.88 0.06 0.89 0.06 0.92 0.09 0.89 0.07 1.11 <0.01 0.80 0.09 0.92 0.01
10 0.82 0.07 0.79 0.09 0.86 0.10 1.04 0.10 0.78 0.08 0.94 0.14 0.78 0.08 1.04 0.08
11 0.98 0.04 1.05s 0.03t 0.91 0.05 0.98 0.08 1.01 0.03 1.29 0.02 1.02 0.03 0.98 0.03
12 0.97 0.04 1.04 0.05 1.21 0.12 1.03 0.01 0.95 0.04 1.28 <0.01 0.99 0.03 1.03 0.11
13 0.99s 0.04t 0.97 0.06 1.08 0.06 0.79 0.02 0.96 0.05 1.60 <0.01 0.97 0.07 0.79 0.02
14 0.91 0.06 0.90 0.08 0.77 0.03 1.07 0.09 0.91 0.09 1.34 <0.01 0.88 0.09 1.07 0.10
15 0.80 0.09 0.73 0.12 0.63 0.17 0.84 0.11 0.79 0.10 1.02 0.03 0.74 0.12 0.84 0.09
16 1.00s 0.04t 0.93 0.04 0.62 0.08 1.34 0.02 0.97 0.03 1.28 <0.01 0.95 0.04 1.34 <0.01
17 0.94 0.05 0.97s 0.03t 0.94 0.08 1.36 0.03 1.02 0.05 1.13 <0.01 0.97 0.05 1.36 <0.01
18 0.98 0.06 0.93 0.04 0.78 0.11 1.40 0.06 0.99 0.05 1.03 <0.01 0.96 0.05 1.40 <0.01
19 0.92 0.07 0.88 0.06 0.74 0.07 1.23 0.09 0.93 0.06 1.38 <0.01 0.91 0.06 1.23 <0.01
20 0.84 0.06 0.84 0.08 0.79 0.10 0.91 0.05 0.88 0.06 0.93 <0.01 0.83 0.06 0.91 0.05
21 0.98 0.04 0.95s 0.03t 0.89 0.06 1.38 0.07 0.98 0.04 1.10 0.02 1.06 0.02 1.38 <0.01
22 1.03s 0.03t 0.94 0.04 0.77 0.14 1.20 0.04 0.93 0.04 0.98 <0.01 1.03 0.04 1.20 0.03
23 1.00 0.04 0.94 0.05 1.04 0.03 0.72 0.05 0.93 0.04 0.60 0.11 0.94 0.06 0.72 0.04
24 0.94 0.05 0.91 0.07 0.91 0.02 0.56 0.01 0.89 0.07 0.24 0.23 0.91 0.06 0.56 0.09
25 0.88 0.07 0.82 0.07 0.90 0.09 0.99 0.05 0.80 0.08 0.69 0.04 0.82 0.07 0.99 0.14
26 0.92s 0.04t 0.95 0.05 1.11 0.06 1.18 0.08 0.90 0.05 0.65 0.06 1.04 0.03 1.18 <0.01
27 0.91 0.06 0.93 0.05 0.95 <0.01 1.15 0.10 0.92 0.05 0.83 0.06 1.00 0.04 1.15 0.03
28 0.87 0.06 0.83 0.06 0.80 0.03 1.23 0.07 0.89 0.05 1.05 0.11 0.85 0.07 1.23 0.01
29 0.80 0.09 0.82 0.06 0.87 0.06 0.98 0.06 0.84 0.08 0.86 0.10 0.75 0.11 0.98 0.03
30 0.79 0.08 0.77 0.09 0.82 0.09 1.01 0.09 0.77 0.08 0.90 0.16 0.77 0.08 1.01 0.07
31 0.92s 0.04 0.94 0.04 0.87 0.01 0.70 0.02 0.87 0.06 1.16 <0.01 0.96 0.04 0.70 0.02
32 0.91 0.03t 0.95s 0.04t 0.67 0.03 0.59 0.02 0.89 0.06 0.88 <0.01 0.98 0.04 0.59 0.05
33 0.87 0.04 0.86 0.06 0.59 0.11 0.85 0.07 0.89 0.07 0.69 0.02 0.95 0.03 0.85 0.06
34 0.86 0.07 0.85 0.06 0.66 0.13 0.80 0.07 0.87 0.06 1.04 0.07 0.95 0.06 0.80 0.06
35 0.83 0.07 0.81 0.10 0.75 0.06 0.71 0.10 0.83 0.06 1.07 0.09 0.83 0.07 0.71 <0.01
36 0.91s 0.04t 1.05s 0.04t 1.06 0.01 1.00 0.05 0.91 0.04 0.85 0.02 0.94 0.04 1.00 0.06
37 0.93 0.05 0.98 0.05 1.07 0.01 1.05 0.09 0.96 0.05 0.66 0.03 0.92 0.05 1.05 0.06
38 0.99 0.05 0.93 0.07 1.23 <0.01 0.92 0.10 0.97 0.05 0.79 0.05 0.90 0.07 0.92 0.03
39 0.94 0.07 0.88 0.08 1.10 <0.01 0.74 0.06 0.90 0.06 0.81 0.21 0.84 0.11 0.74 0.05
40 0.75 0.10 0.75 0.11 0.87 0.01 0.54 0.08 0.71 0.12 0.89 0.11 0.69 0.13 0.54 0.22
41 0.98s 0.04t 0.99 0.04 0.76 0.08 0.73 0.03 0.92 0.04 1.00 0.10 0.98 0.04 0.73 0.07
42 0.96 0.04 1.01s 0.03t 0.78 0.06 0.53 <0.01 0.95 0.04 1.12 0.16 0.87 0.04 0.53 0.09
43 0.90 0.05 0.95 0.05 0.85 0.04 0.79 0.01 0.93 0.05 0.90 0.09 0.90 0.04 0.79 0.11
44 0.89 0.06 0.91 0.04 0.71 0.03 0.60 0.05 0.93 0.04 0.63 0.06 0.84 0.06 0.60 0.13
45 0.87 0.07 0.86 0.09 0.49 0.08 0.65 0.05 0.91 0.05 0.90 0.02 0.83 0.07 0.65 0.01
46 0.93s 0.03t 0.90s 0.04t 0.58 0.14 0.90 0.01 0.84 0.04 1.28 0.02 0.94 0.03 0.90 0.06
47 0.89 0.04 0.88 0.05 0.66 0.11 0.82 <0.01 0.85 0.05 1.30 0.05 0.92 0.03 0.82 0.08
48 0.85 0.06 0.87 0.06 0.74 0.17 1.00 <0.01 0.83 0.05 1.01 0.09 0.95 0.05 1.00 0.04
49 0.81 0.07 0.91 0.06 0.45 0.07 0.89 0.04 0.87 0.07 0.90 0.02 0.95 0.05 0.89 0.05
50 0.84 0.07 0.84 0.08 0.63 0.16 1.04 0.03 0.80 0.09 0.89 0.05 0.90 0.08 1.04 0.01
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Table AI

LLC Scenario RLC Scenario
0_0 0_1 1_0 1_1 0_0 0_1 1_0 1_1

# d p d p d p d p d p d p d p d p

51 0.88s 0.04t 0.94s 0.04t 0.97 0.01 0.94 0.05 0.91 0.05 1.01 <0.01 0.90 0.05 0.94 <0.01
52 0.86 0.05 0.91 0.05 0.61 0.04 0.83 <0.01 0.88 0.05 0.63 0.09 1.00 0.04 0.83 0.06
53 0.81 0.05 0.88 0.06 0.61 0.15 0.82 <0.01 0.85 0.07 0.54 0.02 0.93 0.04 0.82 0.10
54 0.82 0.07 0.85 0.06 0.74 0.05 0.91 0.03 0.84 0.07 0.92 0.09 0.93 0.08 0.91 0.04
55 0.84 0.07 0.81 0.10 0.79 0.05 0.83 0.05 0.82 0.06 1.07 0.06 0.83 0.07 0.83 0.01
56 0.37 0.34 0.44 0.28 0.31 0.38 0.30 0.39 0.41 0.31 0.58 0.12 0.48 0.26 0.30 0.46
57 0.36 0.34 0.44 0.27 0.33 0.37 0.39 0.31 0.42 0.30 0.54 0.10 0.48 0.26 0.39 0.24
58 0.35 0.33 0.44 0.25 0.30 0.40 0.34 0.25 0.39 0.31 0.71 0.09 0.47 0.25 0.34 0.23
59 0.31 0.35 0.43 0.23 0.28 0.48 0.38 0.19 0.36 0.30 0.58 0.13 0.43 0.26 0.38 0.17
60 0.24 0.40 0.34 0.27 0.23 0.48 0.39 0.25 0.28 0.35 0.38 0.27 0.32 0.30 0.39 0.12
61 0.91 0.05 0.96 0.05 1.21 <0.01 0.76 0.06 0.96 0.05 1.16 0.02 0.95 0.06 0.76 0.03
62 0.90 0.05 0.95 0.05 1.16 0.01 1.02 0.03 0.93 0.07 1.11 0.10 0.91 0.07 1.02 0.01
63 0.93 0.07 0.93 0.05 1.06 0.07 0.93 0.03 0.97 0.08 0.96 0.09 0.86 0.07 0.93 0.01
64 0.91 0.07 0.85 0.08 1.02 0.04 0.89 0.07 0.90 0.05 0.80 0.04 0.79 0.09 0.89 0.07
65 0.73 0.08 0.69 0.12 0.82 0.01 0.70 0.05 0.72 0.09 0.79 0.03 0.70 0.09 0.70 0.17
66 0.88 0.06 0.91 0.06 1.00 <0.01 0.79 0.06 0.92 0.07 1.13 0.01 0.97 0.05 0.79 0.01
67 0.87 0.07 0.90 0.06 0.97 0.07 0.77 0.02 0.91 0.06 0.86 0.15 0.93 0.07 0.77 0.07
68 0.91 0.07 0.89 0.07 1.06 0.04 0.70 0.04 0.90 0.08 0.96 0.08 0.88 0.07 0.70 0.18
69 0.87 0.07 0.82 0.10 0.98 0.05 0.63 0.02 0.84 0.09 0.86 0.05 0.79 0.10 0.63 0.17
70 0.70 0.08 0.67 0.12 0.70 0.03 0.59 0.06 0.65 0.11 0.67 0.17 0.65 0.13 0.59 0.24
71 0.94s 0.04t 0.94 0.06 0.98 <0.01 0.95 0.06 0.94 0.06 1.10 0.02 0.85 0.08 0.95 0.13
72 0.93 0.05 0.94 0.06 0.99 <0.01 1.12 0.05 0.92 0.05 1.09 0.01 0.92 0.08 1.12 0.03
73 0.94 0.06 0.91 0.07 1.03 0.11 0.98 0.06 0.95 0.07 0.88 0.11 0.89 0.08 0.98 0.01
74 0.91 0.07 0.82 0.08 0.98 0.07 0.98 0.07 0.86 0.07 0.76 0.05 0.82 0.09 0.98 0.02
75 0.71 0.10 0.65 0.11 0.81 0.05 0.80 0.05 0.70 0.10 0.72 0.15 0.68 0.10 0.80 0.11
76 0.83 0.06 0.84 0.07 0.71 0.07 0.64 0.04 0.77 0.08 1.06 0.04 0.77 0.10 0.64 0.15
77 0.82 0.07 0.81 0.08 0.76 0.03 0.65 0.08 0.76 0.10 1.08 0.06 0.78 0.11 0.65 0.17
78 0.79 0.09 0.80 0.11 0.62 0.04 0.59 0.07 0.72 0.13 0.91 0.02 0.74 0.12 0.59 0.13
79 0.67 0.11 0.64 0.13 0.59 0.18 0.52 0.09 0.67 0.14 0.80 0.10 0.69 0.14 0.52 0.24
80 0.48 0.20 0.44 0.21 0.47 0.16 0.42 0.13 0.44 0.20 0.53 0.12 0.49 0.23 0.42 0.20
81 0.91 0.05 0.96 0.05 0.81 0.02 0.75 0.06 0.86 0.06 0.95 0.01 0.93 0.05 0.75 0.08
82 0.94 0.05 0.83 0.07 0.87 0.01 1.20 0.08 0.88 0.04 0.43 0.01 0.90 0.06 1.20 0.03
83 0.90 0.07 0.85 0.09 0.70 0.07 1.14 0.04 0.87 0.08 1.36 0.05 0.82 0.08 1.14 0.01
84 0.84 0.09 0.78 0.11 0.59 0.12 0.90 0.02 0.83 0.11 0.88 0.03 0.78 0.10 0.90 0.09
85 0.69 0.14 0.62 0.15 0.83 0.10 0.73 0.13 0.68 0.15 0.62 0.05 0.68 0.14 0.73 0.06
86 0.98s 0.04t 0.97 0.06 0.61 0.07 0.83 0.02 0.90 0.06 0.88 0.02 0.95 0.04 0.83 0.09
87 0.86 0.06 0.89 0.06 0.79 0.08 0.86 0.07 0.88 0.08 0.86 0.14 0.88 0.07 0.86 0.04
88 0.89 0.07 0.87 0.07 1.03 0.05 0.66 0.06 0.81 0.08 0.70 0.12 0.87 0.08 0.66 0.09
89 0.82 0.09 0.79 0.10 0.87 0.07 0.83 0.10 0.72 0.13 0.63 0.23 0.75 0.10 0.83 0.13
90 0.66 0.14 0.59 0.17 0.74 0.10 0.72 0.13 0.58 0.19 0.57 0.10 0.59 0.17 0.72 0.16
91 0.92 0.05 0.84 0.05 0.97 <0.01 1.16 0.10 0.89 0.07 0.52 0.01 0.81 0.07 1.16 0.02
92 0.87 0.05 0.79 0.09 1.03 0.08 0.90 0.14 0.88 0.07 0.88 0.10 0.88 0.06 0.90 0.09
93 0.81 0.09 0.81 0.10 1.18 <0.01 0.65 0.16 0.90 0.07 1.05 0.02 0.86 0.06 0.65 0.14
94 0.79 0.09 0.80 0.09 1.09 0.11 0.74 0.09 0.79 0.08 1.11 <0.01 0.82 0.09 0.74 0.11
95 0.65 0.15 0.61 0.17 1.01 0.11 0.52 0.11 0.59 0.15 1.09 <0.01 0.61 0.15 0.52 0.18
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