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Abstract
Purpose – Cooperative driving refers to a notion that intelligent system sharing controlling with human driver and completing driving task together.
One of the key technologies is that the intelligent system can identify the driver’s driving intention in real time to implement consistent driving
decisions. The purpose of this study is to establish a driver intention prediction model.
Design/methodology/approach – The authors used the NIRx device to measure the cerebral cortex activities for identifying the driver’s braking
intention. The experiment was carried out in a virtual reality environment. During the experiment, the driving simulator recorded the driving data
and the functional near-infrared spectroscopy (fNIRS) device recorded the changes in hemoglobin concentration in the cerebral cortex. After the
experiment, the driver’s braking intention identification model was established through the principal component analysis and back propagation
neural network.
Findings – The research results showed that the accuracy of the model established in this paper was 80.39 per cent. And, the model could identify
the driver’s braking intent prior to his braking operation.
Research limitations/implications – The limitation of this study was that the experimental environment was ideal and did not consider the
surrounding traffic. At the same time, other actions of the driver were not taken into account when establishing the braking intention recognition
model. Besides, the verification results obtained in this paper could only reflect the results of a few drivers’ identification of braking intention.
Practical implications – This study can be used as a reference for future research on driving intention through fNIRS, and it also has a positive
effect on the research of brain-controlled driving. At the same time, it has developed new frontiers for intention recognition of cooperative driving.
Social implications – This study explores new directions for future brain-controlled driving and wheelchairs.
Originality/value – The driver’s driving intention was predicted through the fNIRS device for the first time.
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Paper type Research paper

1. Introduction

Compared with the traditional driver assistance system, the
cooperative driving system is required to be more intelligent and
to have the capacity to identify drivers’ driving intentions in real
time. It can also adjust the condition of the vehicle to adapt to
the driver so that it can achieve coordinated control and relieve
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the stress of the driver. Driver’s intention identification is an
extremely challenging problem in the field of cooperative
driving and it now leads to a proliferation of studies. There are
twomethods to identify a driver’s driving intention: one is based
on driving operation data (Klingelschmitt et al., 2014; Jin et al.,
2012; Dang et al., 2013) and the other on brain activity data
(Ikenishi andKamada, 2014; Ikenishi andKamada, 2015).
Many researches have studied drivers’ driving intentions

based on driving-operation data (Zhang et al., 2011; Xiong
et al., 2016; Xin, et al., 2017; Su et al., 2017; Bocklisch, et al.,
2017). Li et al. (2016) proposed a novel algorithm that
combined the hidden Markov model (HMM) and Bayesian
filtering (BF) techniques to recognize a driver’s lane-changing
intention. Zhou and Wu (2011) studied a recognition method
for driver’s intention based on genetic algorithm and ant colony
optimization. Frederik et al. (2015) described the development
of a driver intention detection algorithm for automated
emergency braking systems . Schmidt et al. (2015) presented a
mathematical model of the steering wheel angle, which was
supposed to contribute to predicting lane-change maneuver.
Although a driver’s driving intention can be accurately
identified based on driving data, referring to a posteriori
method, the intentionsmay not be confirmed before the driving
operation. Driving is a process that involves perception,
judgment and operation and is associated with brain activities.
Researchers suggested that different driving operations were
related to different activities in the Brodmann areas of
the cortex (Oka et al., 2015; Orino et al., 2017). Accordingly,
we can identify a driver’s driving intention directly through the
application of technologies that are used to measure brain
activities (Foy et al., 2016), such as functional magnetic
resonance imaging (fMRI), electroencephalogram (EEG) and
functional near-infrared spectroscopy (fNIRS).
EEG is the most traditional measurement method and is

frequently used in fatigue driving detection and driving
intention identification (Ikenishi et al., 2010; Ikenishi et al.,
2013; Vakulin et al., 2015). However, EEG is insufficient in
spatial resolution and susceptibility to the electromagnetic
environment. With the introduction of fMRI and fNIRS, the
researchers studied the relationship between brain function and
driving behavior in a detailed way. You et al. (2012) and
Maguire (2012) used fMRI to study the effects of brain-
memory-related areas on the driving behavior of taxi drivers.
Calhoun and Pearlson (2012) adopted simulated-driving
paradigms to study both the healthy brain and the effects of
acute alcohol administration on functional connectivity during
such paradigms. Schweizer et al. (2013) identified the brain
areas involved while performing different real-world driving
maneuvers and assessed the effects of driving while distracted.
Takahashi et al. (2010) studied the driver’s brain regions
associated with recognition of signals at intersections, using
NIRS. Yoshino et al. (2013a, 2013b) used fNIRS to study the
relationship between driving behavior and cerebral cortex
activity. However, fMRI has some disadvantages because of the
harsh experimental environment in which the participants are
made to lie down. In addition, although it has a good spatial
resolution, it also has the problem of poor temporal resolution
(Kato, 2004). Therefore, fMRI is not suitable for real-time
identification of driving intentions. Compared with the fMRI
device, the fNIRS device is more flexible as it allows the driver

to maintain a normal driving posture during the experiment
and complete the driving operation flexibly.
For better cooperative driving, the driver’s driving intention

must be perceived with the Advanced Driver Assistance System
(ADAS) in advance. This study aims to establish a driver’s
driving intention identification model. Therefore, we used the
NIRx device to measure the data of cerebral cortex activities to
identify driver’s braking intentions. The experiment was carried
out in a virtual reality environment. During the experiment, the
driving simulator (DS) recorded the driving data and the fNIRS
device recorded the data of hemoglobin concentration in the
cerebral cortex. After the experiment, the driver’s braking
intention identification model was established through principal
component analysis (PCA) and back propagation neural
network (BPNN). The purpose of this study is to establish a
model that can accurately identify a driver’s driving intention in
real time, and to provide a new research method for driving
intention identification in the field of cooperative driving.

2. Methodology

The flow diagram of experimental data acquisition is shown in
Figure 1. Firstly, we designed an experiment for the study of
driver’s braking intention, which was implemented on the DS.
During the experiment, the DS could collect driving data in
real time, such as speed, engine speed, acceleration, lateral
acceleration, steering wheel angle, front wheel angle, brake
pedal pressure and acceleration pedal pressure. The fNIRS
device could record the oxy-hemoglobin concentration changes
(DHbO) and deoxy-hemoglobin concentration changes (DHb)
of the driver’s cerebral cortex in real time. After that, we
established the driver’s braking intention recognition model
through these experimental data.

2.1 Experimental design based on driving simulator and
functional near-infrared spectroscopy
The experiment was conducted in a virtual reality (VR) lab
(Figure 2). A total of 52 participants were invited to participate
in the experiment: 10 female and 42 male. All participants
possessed a valid Chinese driving license. Their ages ranged
from 19 to 38 years, with an average age of 26.5 years. Before the
experiment, each driver needed to close his/her eyes and sit in the
cab for about 2 min. The experiment was started only after each
driver’s cerebral cortex blood oxygen concentration stabilized.
The value of the change in cerebral blood oxygen concentration
at that time was used as reference for cortical activity. At the

Figure 1 The flow diagram of experimental data acquisition
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beginning of the experiment, participants sat in a realistic vehicle
mock-up and controlled it in the DS. The drivers had to keep
quiet and calm during the whole experiment. While the
experiment was going on, the DS recorded driving-related data,
including the vehicle speed, brake pedal pressure, acceleration
pedal pressure and steering wheel angle, and the fNIRS device
measured the participants’ brain activities. Each experimental
conditionwas introduced as follows.
The NIRx device (i.e. fNIRS device) used in the experiment is

shown in Figure 3 and it was provided by NIRx Medical
Technologies, LLC. The NIRx device adopted a unique
measurement strategy wherein every possible combination of
sources and detectors formed a measurement channel. It relies
on the optical determination of changes in hemoglobin
concentrations in the cerebral cortex, which results from
increased regional cerebral blood flow. Two wavelengths were
set at 760 and 850 nm for all the recording channels. The
frequency in the sample was set at 7.8152 Hz (record data every
0.128 s). The NIRx device channel distribution and collection
channel area numbers are shown in Figure 4.We can see that the
NIRS cap contains 16 light source points (S1-S16) and 16 light
detector points (D1-D16). The data acquisition channel is
located between the light source and light detector points. There
are 41 data acquisition channels on the NIRx device, which can
record the DHbO and DHb. With this experiment, we could
calculate the total hemoglobin concentration changes (DTH)
based onDHbO andDHb.DTH is the sumofDHbO andDHb.

During the experiment, the drivers needed to drive according to
the road signs. The experimental roads included sections of
constant speed, acceleration and deceleration. As shown in
Figure 5, the accelerated section road was located before the 70
speed limit sign, the deceleration section road was between the
70 and 50 speed limit signs and the constant speed section road
was behind the 50 speed limit sign. Therefore, if a participant
drove on this road section and if his vehicle speed was more
than 50 km/h, he/she had to slow down the vehicle. If the
vehicle speed was no more than 50 km/h, no deceleration
operation was required. During the experiment, each driver
passed the deceleration section roads six times. After the
experiment, about 300 deceleration section road samples were
created.

2.2 Experimental data preprocessing
In order to establish the identification model of driver’s brake
intention, the experimental data was divided into two groups:
braking group and non-braking group (see Figure 6). The
braking group had brake operations, with no steering
operations. The non-braking group had no brake operations
with no steering operations in a time window, of which,
traveling at a constant speed of not less than 5 s. After the
experiment, a total of 152 braking group samples and 115 non-
braking group samples were created. On analyzing the
experimental data recorded by the NIRx device, it was found
that the DTHR (DTH range, i.e. the difference between the

Figure 2 The DS used in this study

Figure 3 The NIRx device used in this study

Figure 4 Distribution of signal acquisition channel of the NIRx device

Figure 5 Experimental road
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maximum and minimum values of DTH in a time window)
reflected the intensity of cerebral cortex activity. DTHR was
very small when the driver kept calm. Conversely, DTHR
would increase when he/she started thinking and judging.
Therefore, DTHR could reflect the brain’s process from a static
state to a state of thinking and judging. Also, we could use
DTHR as an input for driving intention identification classifier.

2.3 Establishment of braking intention identification
model
In this experiment, a total of 266 valid sample data were
obtained, including 152 samples of braking group and 115
samples of non-braking group. About 80 per cent (120 brake
group samples and 95 non-brake group samples) of the total
sample was used as training data and about 20 per cent (31
brake group samples and 20 non-brake group samples) was
used as testing data. The NIRx device used in this study
contained 41 data acquisition channels, which meant that each
sample had 41 features. However, after themodel was built, too
many features and very few samples resulted in overfitting.
Therefore, PCA was used to reduce the dimensionality of
sample data and the driver’s braking intention identification
model was established through BPNN. PCA is one of the most
commonly used dimensionality-reductionmethods that aims to
transform the multi index into a few comprehensive indexes
(i.e. the principal component) by using the idea of dimensionality
reduction. Each principal component of PCA can reflect most of
the information of the original variable, and the information
contained is not repeated. PCAprocessing is as follows:
� Standardization of raw data: All samples of braking and

non-braking groups are put into matrix X. Equation (1) is
the standardizing process, zij is the value of the
standardized matrix after the standardization processing,
xij is the value of row i and column j of matrix X and n is
the row number of matrixX.

� Calculating the correlation coefficient matrix R for the
standard matrix Z: equation (5) is the calculation of rij.

� Calculation of eigenvalues and eigenvectors of matrix R:
The eigenvalues of matrix R can be obtained by using
equation (6). The eigenvalues are arranged according to
the values. (l 1 = l 2 = [. . .] = l n = 0). Then, the

corresponding eigenvectors of each eigenvalue are
calculated.

� Calculation of principal component contribution rate and
cumulative contribution rate: equation (7) is the
calculation of a single vector’s contribution. Equation (8)
is the calculation of the cumulative contribution.
Eigenvalue l 1, l 2,[. . .] and lm correspond to the 1st,
2nd, [. . .] and m-th principal components. In general, the
eigenvectors corresponding to the eigenvalues with a
cumulative contribution rate of 90 per cent are selected as
the eigenvector matrix E [see equation (9)].

� Mapping.

zij ¼ xij � xj
sj

(1)

xj ¼
Xn

i¼1
xij

sj
(2)

s2j ¼
Xn

i¼1
xij � xjð Þ2

n� 1
(3)

R ¼
r11 � � � r1p
� � � � � � � � �
rn1 � � � rnp

2
4

3
5 (4)

rij ¼
Xn

k¼1
zki � zið Þ zkj � zjð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1
zki � zið Þ2

Xn

k¼1
zkj � zjð Þ2

q (5)

jlI � Rj ¼ 0 (6)

l i

Rp
k¼1lk

(7)

Ri
k¼1lk

Rp
k¼1lk

(8)

E ¼ e1e2 . . . ekð ÞT (9)

By mapping the sample matrix X to the selected eigenvector E,
we can obtain the reduced dimensional matrix T
[equation (10)]. In this study, the dimensionally reduced
samples were used as input samples for the classifier BPNN.
BPNN is a multi-layer feed-forward neural network. It is
mainly characterized by that the signal propagates forward and
the error propagates backward. The learning process is mainly
divided into two stages. The first stage is the forward
propagation of the signal. The signal passes through the hidden
layer in the input layer to the last output layer. The second stage
is the back propagation of the error. The signal goes from the
output layer to the hidden layer and finally reaches the input
layer to adjust the weight and bias of each layer. The typical
BPNN structure is shown in Figure 7. It contains an input

Figure 6 Grouping of experimental data
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layer, an output layer and a hidden layer. By setting the
corresponding network structure and parameters and inputting
the training data into BPNN to train this network, the driver’s
braking intention identificationmodel can be obtained:

T ¼ X � E (10)

The establishment process of the model is shown in Figure 8.
Firstly, the time window selected to 3.84 s and we can calculate
the range of raw DTH in each NIRx device data acquisition
channel. Then, we could get the DTHR of all samples, which
was added to matrix A. After that, the dimension of matrix A
was reduced by PCA, and this reduced dimension matrix was
divided into training samplematrix B and testing sample matrix
C. Finally, BPNN was trained by matrix B. After the training
was completed, matrix C was used to test the generalization
ability of the classifier. Adjusting the structure and parameters
of BPNNhelped achieve a better test accuracy.

2.4. Model validation
Three drivers’ driving data under the deceleration condition
road were randomly selected to test and verify the model
established in this paper. The process is shown in Figure 9. The
input data of the braking intention identification model were
the DTH vector of the driver’s cerebral cortex at some point,
and the output data were the testing result of the model to the
driver’s braking intention. The internal processing of themodel
is as follows: In the first place, the vector of DTHR with a time

window of 3.84 s was calculated based on the raw DTH vector.
After that, the calculated vector DTHR was added to matrix A
to obtain a new matrix D. Then, the PCA algorithm was
applied to reduce the dimension of matrix D. The reduced
vector E was worked out as the input of BPNN. Finally, the
output of themodel was whether the driver had a braking intent
at themoment.

3. Results

Figure 10 shows the relationship between the number of
sample features and the test accuracy of BPNN: the x-axis
represents the number of sample features after PCA
dimensionality reduction and the y-axis represents the test
accuracy of BPNN. It can be seen that the samples have
different feature quantities corresponding to the different test
accuracy of BPNN. When the sample feature number was 15,
the network achieved the best test accuracy of 80.39 per cent.
The verification result of the braking intention identification

model is shown in Figure 11, in which the x-axis represents the
time and the y-axis represents the verification result of
the model. In this figure, the blue dashed line indicates the
identification result of the model to the driver’s braking
intention. A result of more than 0 means that the driver has a

Figure 7 Typical BPNN structure with one hidden layer

Figure 8 The establishment process of the driver’s braking intention
identification model

Figure 9 The verification process of driver’s braking intention

Figure 10 The relationship between the test accuracy of BPNN and
sample feature quantity

Driver’s braking intention identification

Lei Zhu, Shuguang Li, Yaohua Li, Min Wang, Yanyu Li and Jin Yao

Journal of Intelligent and Connected Vehicles

Volume 1 · Number 3 · 2018 · 107–113

111



braking intention at the time and less than 0 means that the
driver has no braking intention. The solid purple line indicates
the actual operation of the brake pedal. A result of �1
indicates the driver has no braking operation at the time and 1
indicates the driver has a braking operation. As shown in
Figure 11, the output of themodel was greater than 1 before the
driver’s braking operation, which indicated that the model
could identify the driver’s braking intent prior to his braking
operation.

4. Discussion

ADAS has raised expectations for the reduction of human
error while driving and released or freed people from the
task of driving. We called the pattern that ADAS sharing
controlling with human driver and completing driving task
together as cooperative driving. To achieve better
cooperative driving, the driver’s driving intention must be
perceived by ADAS in advance. Driver’s driving intention
identification is of great significance to automatic driving,
and identifying driver’s driving intention with ADAS in
advance is helpful for vehicle safety, stability and comfort.
This study aimed to establish a driver’s driving intention
identification model. To this end, we designed an
experiment based on DS and NIRx devices to study the
driver’s braking intention. The simulation experiment was
carried out on the deceleration road (Figure 5). During the
experiment, the DS collected driving-related data and
the NIRx device collected cortical activity data. Then, the
machine-learning algorithm was used to establish the
identification model of driver’s braking intention.
In cooperative driving, the accuracy and timeliness of driver

intention recognition are particularly important for ADAS.
Studies (Li et al., 2016) have shown that drivers’ driving
intentions can be identified accurately from driver’s driving data.
However, this method can identify the driver’s driving intention
only after the driver has a corresponding driving operation. If the
driver’s driving intention can be identified by ADAS in advance,
it will be better to realize cooperative driving. To this end, we
explored the method of identifying driver’s driving intention by
brain activity measurement. In this study, the NIRx device was
used tomeasure the activity of the driver’s cerebral cortex.
At present, researchers have used fNIRS to study the

relationship between driving behavior and cerebral cortex

activity, such as the relationship between activity in the
prefrontal cortex and vehicle speed (Yoshino et al., 2013a,
2013b). Oka et al. (2015) studied the respective active
regions of the brain when turning left and right through
curve conditions experiments. Orino et al. (2017) studied
the relationship between the activity of the entire brain and
the behavior of driving operations during actual road travel.
However, a few researchers have used fNIRS to predict
driver’s driving intentions in advance. In this study, based
on the DS and the fNIRS experiments, the prediction model
of driver’s braking intention was established. The test
accuracy of the model with the driver’s braking intention
was 80.39 per cent. Although the recognition rate in this
paper was lower than the recognition rate of the model built
by Ikenishi and Kamada (2015) (about 88 per cent), fNIRS
was used to predict driving intention for the first time, which
opened a new research direction for driving intention
identification.
It is worth noting that the driving intention identification

model established in this study can recognize the driver’s
braking intention only from constant speed driving to
deceleration driving. The limitation of this study was that
the experimental environment was ideal and did not
consider the surrounding traffic. At the same time, other
actions of the driver were not taken into account when
establishing the braking intention recognition model.
Besides, the validation data were gathered from 52 drivers’
experimental data, and the verification results obtained in
this paper could only reflect the results of some drivers’
identification of braking intention. Because of the individual
differences among the drivers, the identification model of
the driver’s braking intention established in this paper
cannot accurately identify every driver’s braking intention in
real time. The individual differences in the brain activities of
the drivers while driving are mainly reflected in the slight
differences in the changes of hemoglobin concentrations in
the cerebral cortex when the driver has a braking intention.
Therefore, in the future research, we will establish a driving
intention identification model under complex driving
conditions and improve the identification accuracy of the
model for driving intention to achieve the effect of real-time
identification of driver’s braking intention. In addition, we
will consider differences in the brain activities of drivers
when they have the same driving intention.

5. Conclusion

In this study, the driver’s braking intention identification
model was established through PCA and BPNN. In
addition, the data of three drivers driving under deceleration
condition were gathered randomly to verify the model. The
research results showed that the accuracy of the model
established in this paper was 80.39 per cent. This study can
be used as a reference for future research on driving
intention through fNIRS, and it has a positive effect on the
research of brain-controlled driving. At the same time, it has
developed new frontiers for intention recognition of
cooperative driving.

Figure 11 Verification results of the braking intention identification
model
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