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Abstract
Purpose – This paper aims to review the studies on intersection control with connected and automated vehicles (CAVs).
Design/methodology/approach – The most seminal and recent research in this area is reviewed. This study specifically focuses on two categories:
CAV trajectory planning and joint intersection and CAV control.
Findings – It is found that there is a lack of widely recognized benchmarks in this area, which hinders the validation and demonstration of new studies.
Originality/value – In this review, the authors focus on the methodological approaches taken to empower intersection control with CAVs. The
authors hope the present review could shed light on the state-of-the-art methods, research gaps and future research directions.
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1. Introduction

Road intersections are where conflicting traffic flows are forced to
share the limited spatiotemporal resources and thus often cause
the most delay, emission and accidents in urban transport
systems. Ever since the first documented implementation of
traffic lights in London in 1868, the management of intersections
has been at the heart of transport engineering. Generations of
transport academics and engineers devoted enormous efforts to
advancing the knowledge of intersection control and
optimization (Dion et al., 2004; Qu and Wang, 2021; Wadud
and Mattioli, 2021; Wu et al., 2019; Xu et al., 2022). However,
although one and a half centuries have passed, we still heavily rely
on traffic lights in controlling traffic flows at intersections,
because the signals are unfortunately the only component that
can be controlled. The emerging connected and automated
vehicle (CAV) technology shows a promising future of urban
transportation, where travelers, vehicles and infrastructures can
be reached and controlled for the first time (Lee and Hess, 2020;
Larsson et al., 2021; Ortúzar, 2021; Rad et al., 2021; Tan et al.,
2022; Wang et al., 2022a, 2022b). Vehicle-to-vehicle (V2V)
communication, vehicle-to-infrastructure (V2I) communication
and autonomous driving technologies are widely regarded as the
key enablers for the development of next-generation intelligent
transport systems and are highly anticipated to bring new
solutions to themost concerned transportation problems. On top
of the list is themanagement of road intersections.

In this fast-growing area, it has been more than three years
since the last related review was conducted by Guo, et al.
(2019), during which an abundance of new concepts, methods
and field experiments were proposed and conducted. This calls
for a re-examination of the state-of-the-art knowledge to
identify the prevailing research orientations, most advanced
models and algorithms, widely used benchmarks and research
gaps. To this end, we present such a review in the present
paper. Except for a regular update of references, this review
differentiates itself from previous ones with a focus on the
management of isolated intersections, whereas previous
reviews often cover a wide range of infrastructures on different
scales, such as ramps, corridors and signal networks (Rios-
Torres and Malikopoulos, 2017). Specifically, we seek to
deepen the understanding of isolated intersection management
because it is the foundation for research on larger scales, and it
has not been satisfactorily resolved yet. Along this line, we
target two mainstreams of research in this area, i.e. CAV
trajectory planning at signalized intersections and joint CAVs
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control and traffic signal optimization. For each stream, we will
focus on the key setups, strengths and limitations of the most
widely used methodological paradigms. We hope the present
work could help new readers fast familiarize the frontiers and
motivate experienced researchers to tackle themost challenging
problems in this area.
For the convenience of communication, Figure 1 is used

throughout the paper in which an intersection is divided into three
nested zones, i.e. the conflict zone, control zone and
communication zone. Different papersmay have diverse numbers
of sizes of zones, depending on the applied methods and setups,
but Figure 1 should facilitate the introduction of most studies
based on our experience. In most cases, the conflict zone is only
highlighted in autonomous intersection management (AIM)
studies where all the vehicles are CAVs and thus traffic signals can
be potentially removed; the control zone often defines the area
whereCAVsmust follow the designed trajectories or cannotmake
lane changings; the communication zone is practically defined by
the communication range where solution calculations or lane
changings are conducted. We would also like to clarify that
steering control is beyond the scope of this review, and we always
assume thatCAVs can perfectly follow the designed trajectories.
The remainder of the paper will be arranged as follows.

Section 2 reviews the advances in CAV trajectory design at
intersections. Section 3 presents the state-of-the-art methods
for the joint control of CAVs and intersections. Section 4
concludes the paper with discussions.

2. Connected and automated vehicle trajectory
planning

Advanced driver-assistance systems are nowadays common add-
ons for commercialized vehicles, which could to some extent
relieve drivers from disturbing tasks, such as lane keeping and
maintaining a constant speed (Zhou et al., 2020). With CAVs, it
is reasonable to expect that vehicles could perform more

demanding and sophisticated tasks by following well-designed
trajectories. At signalized intersections, the trajectories can be
designed to catch a green light, reduce emission, alleviate
oscillations and the list goes on. This idea is explored by a large
body of research, as it is the most fundamental application of
CAV innovation. In this section, we review the key methods used
in CAV trajectory planning at signalized intersections, as well as
the findings and research gaps.
In this direction, the traffic signal control plan is usually an

input instead of a set of decision variables, so fixed-time control
is often used to generate a stationary and reproducible context.
Based on whether lane changings are involved, studies can be
generally divided into two categories, i.e. single-lane trajectory
planning andmulti-lane trajectory planning.

2.1 Single-lane trajectory planning
Given that the signal timing is fixed, and lane changings are
omitted, the CAV trajectory design problem is inherently
equivalent to the CAV car-following control problem in a
signalized intersection context. Regardless of the objective
function and the methods used, one can usually see smooth
trajectories passing intersections without stops, as illustrated in
Figure 2.We hereby introduce recent advances in CAV trajectory
planning at single-lane intersections from model-based and
learning-based perspectives. Note that we also consider studies
that have a multi-lane setup but forbid lane changings as single-
lane intersection research, as only longitudinal trajectory planning
is concerned, for example, in the paper fromChen et al. (2021).

2.1.1Model-based connected and automated vehicle trajectory
planning
In the car-following control of CAVs, control theory serves as the
backbone of the analytical framework because the system status can
be well described by a set of state and input vectors.Without losing
generality, the control problem canbe formulated as follows.

min
u

Jðx;uÞ

_x ¼ f x tð Þ;u tð Þð Þ (2)

u tð Þ 2 U (3)

x 0ð Þ ¼ x0 (4)

where J(x,u) is a general objective function that can be
formulated based on the optimization purposes; _x denotes the
system state vector and is usually characterized by vehicle
position and speed; u(t) is the constrained control input, for
whichmost existing studies use the vehicle acceleration rate as a
convenient differential extension for the system state vectors; x
(0) denotes the initial condition. With the above formulation,
the abundance of control theories can be directly applied to
solve the optimal trajectory planning problem, such as the
model predictive control methods.
In this approach, Wang et al. (2014a) proposed a rolling

horizon control framework for the car-following problem of
CAVs. In their work, it is demonstrated how the objective
function in equation (1) can be tailored to fulfill different control
objectives such as safety penalties and realize diverse control

Figure 1 Different zones for CAV and intersection control
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strategies, for example, the constant time gap policy. In a
following study, they extend the methodology to the modeling of
cooperative CAV and human-driven vehicle (HDV) platoons
(Wang et al., 2014b). Zhou et al. (2017) further developed a
stochastic optimal control model following the same rolling
horizon control framework by considering the uncertainties in the
measurement of system states. Other key problems, e.g.
communication constraints, platoon string stability and
computational performances, were also examined under the
control theory framework (Montanino and Punzo, 2021;
Talebpour and Mahmassani, 2016; Wang et al., 2019; Zhou
et al., 2019; Zhou et al., 2020).
The control theory-based CAV trajectory planning enjoys

several strengths in problem-solving. First, the objective
function can be easily tailored to fulfill different optimization
goals. Second, explicit formulations enable a clear
understanding of the problem and reproducible results. Last
but not least, closed-form solutions can sometimes be achieved,
which is highly favorable in field implementations. With
profound models, car-following control can easily extend to
CAV trajectory planning at single-lane intersections. The most
notable application is eco-driving. Jiang et al. (2017) proposed
an eco-driving framework for an isolated intersection with
mixed CAV and HDV platoons. Significant fuel consumption
reductions (2.02% to 58.01%) and improvements on
throughput volume were observed due to the proposed control
methods. Chen et al. (2021) developed a platoon-based control
framework for the optimization of traffic efficiency and fuel
consumption. In the control zone as illustrated in Figure 1,
CAVs will lead and regulate a platoon of human drivers, and
the control framework in equations (1)–(4) was applied to
design trajectories. Zhang et al. (2021) proposed a wireless
charging scheme for connected automated, and electric
vehicles. The key idea is to deploy a partial wireless charging
lane to utilize the slow movement of CAVs at the intersection.

However, under scenarios when closed-form solutions cannot
be found, those sophisticated models can still suffer from overly
long computational time which inspired heuristic-based
trajectory planning models, such as the parsimonious shooting
algorithm (Ma et al., 2017; Zhou et al., 2017).

2.1.2 Learning-based connected and automated vehicle trajectory
planning
Except for the aforementioned model-based approach, recent
studies start to explore the possibility of designing CAV
trajectories with state-of-the-art machine learning technologies,
especially reinforcement learning (RL) models (Peng et al.,
2021). A general RL model consists of clearly defined agents,
system states, a set of actions, transition functions and reward
functions in a Markov decision process (MDP) (Sutton and
Barto, 2005). Due to the MDP nature of vehicle control
problems, RL has thus been increasingly implemented in the
trajectory design of CAVs at isolated intersections. The
methodological framework is illustrated in Figure 3. At each time
step t, the ego vehicle receives an observation of the intersection st

Figure 2 Examples for CAV trajectory planning results at isolated intersections

Figure 3 RL framework for CAV trajectory planning at an isolated
intersection
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and a reward rt from the environment. The behavior of the CAV
is determined by a policy p, based on which the CAV generates a
probability distribution of actionsP(a) =p (st).
In this area, Zhou et al. (2020) developed a RL-based car-

followingmodel for CAVs in a single-lane intersection scenario to
improve the overall traffic efficiency, fuel consumption and traffic
safety. Based on a comparative study with HDVs, the trained
CAV controller significantly outperformed its counterpart and
exhibited smooth trajectories instead of oscillations induced by
the stop-and-go behaviors of human drivers. Chen et al. (2018)
implemented a hierarchical RL algorithm for traffic light
approaches, which first decides whether the controlled vehicle
should stop or pass at a traffic light and then performs the
corresponding longitudinal control accordingly. Shi et al. (2018)
used traditional (non-deep) Q-learning to develop an efficient
driving strategy for approaching signalized intersections. Mousa
et al. (2020) used deep Q-learning with prioritized experience
replay, target networks and double-learning to train an RL agent
to approach and depart efficiently at signalized intersections for
situations where no other vehicles are interfering. Wang et al.
(2022a, 2022b) focused on the CAV control problem in mixed
traffic flow at signalized intersections with particular
considerations of the oscillations induced by human drivers. A
deep RL model was developed to predict the trajectories of
HDVs and control CAVs. Numerical experiments showed that
the developed method could considerably improve the system
performance even under a low penetration rate of CAVs (e.g.
10%). Other transportation applications of RL and deep
reinforcement learning can be found in the comprehensive review
presented byHaydari andYılmaz (2022).

2.2Multi-lane trajectory planning
In multi-lane scenarios, lane-changing (LC) is inevitable and
thus has drawn increasing attention, as LC is a major source of
traffic flow disturbance (Ali et al., 2021). With CAVs, smooth
and safe LC trajectories can be designed and precisely followed
by smart vehicles (Larsson et al., 2021). Further, using CAVs
and control actuators, HDV LC behaviors could be to some
extent regulated (Peng et al., 2021). In the context of signalized
intersections, both discretionary and mandatory LC exist, but
discretionary LC gradually becomes the dominant one, as
vehicles need to be in the desired lane group (left-turning,
through-going and right-turning lanes) before reaching the stop
line. Thus, the completion time is often involved as an
additional objective or constraint. Completion time mainly
consists of two parts, namely, the computation time for
trajectory planning and the execution time, and consequently
merits two research directions. Based on our review of existing
studies, it is notable that the most efficient and best-performing
algorithms have to cover both aspects, and thus it is intractable
to completely separate the two research directions. However, to
present a more structural review, we here cluster studies based
on their primary focus.
Given computation time as a prioritized objective,

decentralized methods are often favored in the trajectory
planning of CAVs at intersections due to advantages in
computational efficiency (Malikopoulos et al., 2018; Yao and
Li, 2020). For example, Ma et al. (2021) developed a
decentralized trajectory planning method for both CAVs and
connected HDVs. In their research, a bi-level optimization

method was formulated to isolate the twisted LC and car-
following problems. The upper level addressed the LC
strategies, whereas the lower level optimized the longitudinal
acceleration profile to solve the car-following control problem.
To realize real-time implementation, several techniques were
combined and applied, such as sequential processing, tree-
searching and rolling horizon optimization. However, in such
decentralized frameworks, it is theoretically possible that
human drivers might cut in when a deliberately created gap
emerges and compromise the expected trajectory planning
results. To address this issue, Yao and Li (2021) developed a
decentralized framework that adopts the LC aware concept for
restraining discretionary lane changes but yielding mandatory
lane changes. To expedite the solving of the formulated non-
linear optimization problem, linearization was performed to
enable the direct use of commercial solvers such as CPLEX and
Gurobi. Compared to the baseline scenario where a LC
awareness strategy is not included, the proposed method could
yield a significant improvement in riding comfort, travel time,
energy consumption and safety. For the same reason, machine
learning-based models are extensively used in the control of
CAVs in various scenarios for the well-known strength of
solving complex problems in a reasonable time (Agostinelli
et al., 2019). Due to the nature of being a control problem, RL
becomes the most prevailing framework in this area. For
instance, Bai et al. (2022) developed a hybrid RL-based eco-
driving strategy for mixed CAV and HDV traffic flows at
signalized intersections. The strategy was demonstrated in a
multi-lane intersection scenario through a unity-based
simulator. Nevertheless, studies in this area are relatively rare
probably due to the following three reasons:
1 the complexity brought by multi-lane LC coordination;
2 the uncertainties brought by human drivers; and
3 the constrained improvement when intersection control

and optimization are excluded in the coordination.

Another major stream of research is to minimize the execution
time by optimally designing CAV trajectories. Due to the high
requirement of cooperation, studies in this approach often
assume 100% CAV penetration rates. As intersection control is
still excluded, the main motivation here is to develop general
platoon control models and algorithms that can be applied to
common road bottlenecks such as signalized intersections,
highway ramps and work zones. The methodological
frameworks in this area mainly stem from those widely used in
multi-robot motion planning (Gonz�alez et al., 2016; Paden
et al., 2016). For example, Wu et al. (2021) proposed a
cooperative sorting algorithm for multi-lane CAV platoons,
which can realize an optimal transition from any initial platoon
permutation to any desired permutation. The algorithm relies
on a discretization of the road section into a grid system with
homogenous cells. Each CAV can occupy only one cell, and
each cell can only accommodate one CAV. The sorting
problem of the multi-lane platoon is further modeled as a
shortest path finding problem in a hyper network in which each
node represents a unique platoon permutation. A modified A

�

algorithm was developed to accelerate the searching with
guaranteed optimality and compatibility with distributed
computing techniques. Such techniques were commonly used
in combinatorial optimization problems and games, such as the

Connected and automated vehicles

JiamingWu and Xiaobo Qu

Journal of Intelligent and Connected Vehicles

Volume 5 · Number 3 · 2022 · 260–269

263



N-puzzle problem and Rubik’s cube problem (Agostinelli et al.,
2019). However, in the problem of CAV platoon control, extra
vehicle dynamic constraints and traffic-oriented objectives
must be considered and integrated into the framework. The
generality of the sorting algorithm was further demonstrated in
their continuous research in different bottleneck scenarios,
such as emergency vehicle preemption (Wu et al., 2020) and
work zone (Cao et al., 2021). A similar framework was also
used in the study of Cai et al. (2022), in which the A

�
algorithm

was replaced with a conflict-based searching algorithm. The
conflict-based searching algorithm is arguably faster than the A

�

algorithm because it is inherently a decentralized method and
addresses trajectory conflicts “on the fly,” whereas A

�
avoids

conflicts in a centralized approach. In short, A
�
guarantees

optimality but suffers from computation complexity; conflict-
based searching enables fast computation but only generates
sub-optimal solutions.
At signalized intersections, the above models could, as an

example, realize flexible lane management and thus improve
system efficiency. Specifically, as shown in Figure 4, if we could
reorganize the CAV platoon and horizontally separate left-
turning vehicles and through vehicles, all lanes can be used in
both left-turning and through signal phases and consequently
increase intersection capacity without changing the intersection
control plan.

3. Joint intersection and connected and
automated vehicle control

In this section, we review the most recent studies of joint
control and optimization of intersections and CAVs. Research
in this area represents the most complicated technology
integration and seeks to fully exploit the potential of CAVs in
improving the performance of intersections. Depending on
whether physical traffic signals are used, we divide existing
studies into two main categories: joint control at signalized
intersections; and autonomous intersectionmanagement.

3.1 Joint control at signalized intersections
In the near future, jointly optimizing vehicle trajectories and
signal control plans are probably the most anticipated and
practical usage of CAV technology at intersections, but the
problem is difficult. The convectional intersection signal
control problem itself is in nature a combinatorial optimization
problem, calling for the coordination of multiple dynamic
traffic flows in both time and space. Vehicle trajectory planning
can be also characterized by a combinatorial optimization
approach in that vehicles interact with each other, all trying to

pass the intersection safely and efficiently. The desire to
simultaneously resolve both problemsmultiply the difficulty.
The most widely used method in this area is to model the

joint control problem as a mathematical programming
problem, such as mixed-integer linear programming (MILP),
dynamic programming (DP) and nonlinear programming
problems, which enables the direct usage of commercial solvers
and state-of-the-art optimization techniques (Xu et al., 2019;
Yu et al., 2018). The foundation of this modeling approach is
that common decision variables in this type of problem are
either integer (e.g. signal sequence, intersection leg index,
vehicle index) or continuous variables (e.g. location, speed and
acceleration rate), and thus the objectives and constraints can
often be continently linearized (Chowdhury et al., 2021;
Hadjigeorgiou andTimotheou, 2022).
To simplify the optimization problem, a large number of

studies decompose and reformulate the joint control problem
into a bi-level or two-stage problem, each level or stage
addressing one of the two twisted problems (i.e. signal
optimization and CAV trajectory optimization). For example,
Xu et al. (2018) proposed a two-step strategy for the joint
optimal control problem. The first step optimized traffic signals
and vehicles’ arriving time with the objective to minimize the
total delay of all vehicles. Based on the results from step one,
the second step further optimizes vehicle trajectories to
minimize fuel consumption. Their study assumed that when
the vehicles enter the communication zone (Figure 1), all
vehicles are already on the desired lanes so that the
disturbances from lane changings are eliminated. VISSIM-
based simulation experiments were conducted to demonstrate
the performance of the proposed method. Results of the case
studies reported a significant reduction in delay and emission.
Similarly, Guo et al. (2019) also adopted a two-step approach
to optimize traffic signals plan and CAV trajectories,
respectively. For intersection control optimization, they
developed a DP and shooting heuristic algorithm, which
outperformed conventional adaptive control with a reduction
of average travel time by up to 35.72% and energy
consumption by up to 31.5%. For trajectory optimization, a
numerical gradient-based approach was applied for best system
performance realization. Such sequential decomposition of the
joint control problem surely eases the solving of the complex
optimization problem but inevitably loses optimality to a large
extent. To this end, a few attempts have been made to directly
solve the unified problem. Yu et al. (2018) proposed such a
method by modeling the joint control problem as a MILP
problem, in which signal phase sequences, green time start time
and duration for each phase, cycle lengths andCAV trajectories
were considered as control variables (that are to be optimized).

Figure 4 Platoon control at signalized intersections
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For simplification, they created a no-LC zone inside of the
control zone to reduce the solution space at the sacrifice of
optimality. Liu et al. (2022) also developed a single-layer
approach for the joint optimization problems through the
MILP modeling approach. In their model, simplification is
introduced by using fixed signal sequences and the forbidden of
lane changings in the communication zone (Figure 1).
Soleimaniamiri et al. (2020) developed an analytical
optimization approach with a focus on real-time
implementation. To reduce the computational burden, the
vehicle trajectories were simplified as piece-wise quadratic
functions, and macroscopic fuel consumption estimations are
performed instead of using non-linear instantaneous
consumptionmodels.
Apart from the above research, the following studies are also

notable addressing the joint control problem from different
perspectives. Liang et al. (2020) proposed an equitable control
framework with connected vehicles by constraining the
maximum delay experienced by any individual vehicle. Ding
et al. (2021) adopted the MILP modeling approach to
investigate the merits of dynamic lane usage in a CAV
environment. This study sought to improve the intersection
performance from the space domain. On the contrary, Ma et al.
(2022) proposed to use dedicated lanes for CAVs but with
shared phases, which can be considered an effort from the time
domain. From a rare but precious approach, Liu et al. (2021)
conducted field experiments to evaluate the intersection
performance enhanced by signal optimization and CAV
trajectory planning. The results report a considerable reduction
in energy consumption and improvement in average travel
speed.

3.2 Autonomous intersectionmanagement
AIM refers to the control strategy that the function of physical
traffic signals in resolving conflicts is replaced by smart vehicles,
such as CAVs, that are able to communicate with and follow
the guidelines of infrastructures (Chen et al., 2020; Guillen-
Perez and Cano, 2022; Lee and Park, 2012; Lu et al., 2022;
Olovsson et al., 2022). For this topic, we present two prevailing
streams of research: reservation-based strategy; optimization-
based strategy.
The very first study of reservation-based AIM can date back

to the paper fromDresner and Stone (2004). In this pioneering
work, the intersection area (the conflict zone in Figure 1) is
divided into a number of homogenous cells, and each vehicle
will send a request of those cells, including also other traversing
information such as arrival time, velocity, direction, vehicle size
and acceleration rates. A rule shall then be designed to accept
and reject reservation requests from different vehicles. The
majority of research in this area is centered on the development
of new reservation rules.
The most natural and probably most widely used reservation

rule is first-come-first-serve (FCFS), an intuitive rule inherited
from queue theory. However, it has been well recognized that
FCFS can sometimes be less efficient than traffic signals,
especially under high traffic demand (Levin et al., 2016). On
this topic, Yu et al. (2019) provided a theoretical foundation for
the capacity and delay estimation for autonomous intersections
with the FCFS strategy. In their research, the AIM system is
modeled as a M/G/1 queueing system with Poisson arrivals.

The system performance of both vehicle-based FCFS and
batch-based FCFS strategies wasmathematically modeled with
analytical formulations. The theoretical analysis indicated that
although batch-based strategy outperforms the vehicle-based
counterpart due to the advantages of platooning, it is inherently
still a FCFS strategy and thus can be out formed by traffic
signals because of the myopic nature of FCFS in system
organization. Thus, in state-of-the-art research, FCFS is only
used as a benchmark. For example, Li et al. (2019) proposed a
priority-based algorithm that fixed the priority level of existing
vehicles but kept updating the priority level of upcoming
vehicles, so that latter coming CAVs can potentially be
discharged first, violating the FCFS law. This simple change of
reservation policy brought significant improvement in the
intersection efficiency. Lukose et al. (2019) incorporated
the operational patterns and insights of traffic signals into the
development of reservation laws, which led to two new policies,
namely, WEIGHTED and PHASED. Mitrovic et al. (2020)
combined the alternative-direction lane concept with
reservation-based intersection control, which resulted in
superior performance compared to conventional fixed-time
control plan and fully reservation-based intersection control
strategy.
In reservation-based strategies, the conflicts within the

intersection area are resolved with a rule-based approach
largely by shifting the existing vehicle trajectories in time and
space. On the contrary, optimization-based methods consider
CAV trajectories as decision variables to eliminate conflicts
proactively. For instance, Yu et al. (2019) developed an
optimization-based control framework for autonomous
intersection management. In the proposed model, CAVs either
drive at the speed limit or follow the Newell’s model when
blocked by a preceding vehicle. To further simplify the
computation, it is also assumed that CAVs follow deterministic
trajectories in the conflict zone (Figure 1). Li et al. (2019)
developed a similar optimization model with adjustable speed.
To resolve the extra computation burden, a meta-heuristic
Tabu search algorithm is applied to solve the optimization
problem.
Considering the enormous number of decision variables and

high requirement of control granularity, optimization problems
in AIM feature high computation complexity. To this end,
distributed control methods are drawing increasing attention.
Mirheli et al. (2019) proposed a consensus-based control logic
for themovement of CAVs in an AIM scenario. The objective is
to minimize CAV travel time while avoiding near-crash
conditions. Instead of using one large MILP, their research
developed mixed-integer non-linear programs for each vehicle
in a distributed fashion. To address the potential conflicts,
vehicle consensus was realized through an iterative process to
yield conflict-free trajectories that minimize the overall travel
time. This framework fundamentally enabled real-time
implementation due to the considerably reduced computation
complexity, while only having a marginal objective value of
2.3% compared to centralized control methods. Wu et al.
(2019) modeled the AIM problem as a multi-agent MDP, in
which CAVs collaboratively minimize the intersection delay
while avoiding conflicts. The complexity issue is largely
addressed by the independent structures of the proposed
algorithm, and conflicts are prevented by iteratively adapting
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coordination needs. Yao and Li (2020) investigated the AIM
problem in a single-lane scenario with mixed traffic flows,
where each vehicle aimed tominimize its own travel time, safety
risks and energy consumption.

4. Conclusion and discussion

In this paper, we reviewed the two main categories of research
regarding the opportunities and challenges brought by CAVs in
isolated intersection management. The first category concerns
CAV trajectory planning at an isolated intersection. In single-
lane scenarios, control theory is arguably the predominant
modeling framework and has been continuously exploited in
CAV trajectory planning. At multi-lane intersections, due to
the added complexity and uncertainties from lane changings,
existing studies prioritize the fast completion of trajectory
planning and execution so that lane changes can be completed
before arriving at the stop line. This calls for either a
computationally efficient algorithm or an optimal solution.
Unfortunately, fast and also optimal solution has been rarely
seen due to the curse of dimensionality. The second category is
focused on the joint control and optimization problem of CAVs
and the intersection, where the problem becomes even more
complex. Regardless of the existence of physical traffic signals,
mathematical programming models, distributed frameworks
and machine learning techniques stand out to be the most
prevailing and best-performing tools.
It is intractable to summarize the technical limitations for all

of the ever-growing research papers, as each uses different
setups, various assumptions and diverse objective functions.
However, when reviewing the above papers, one common
barrier stands out, i.e. the lack of benchmarks. Albeit with the
booming development in this area of research, widely
recognized benchmarks such as those in operations research
and computer science are absent. The absence of such
standards hinders the judgment of truly cutting-edge research,
especially when it comes to the evaluation of computational
performance and solution quality, two of themost fundamental
and crucial metrics in this area. Specifically, many existing
studies present the absolute computation time of case studies
without theoretical computation complexity analysis. However,
the absolute computation time depends on a number of factors,
such as computing device and coding skills, and thus cannot
always accurately reflect the algorithm complexity. In addition,
the majority of existing studies compare their models to very
basic models such as FCFS strategies and fixed-time
intersection control but rarely with state-of-the-art models,
probably because of the difficulties encountered during
reproducing others’ work. As stated by Zheng (2021),
promoting reproducible transportation research might be a
solution to remove the above barriers and thus should be where
future efforts are devoted to.
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