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Abstract
Purpose – The purpose of this paper is to search for the critical-scenarios of autonomous vehicles (AVs) quickly and comprehensively, which is
essential for verification and validation (V&V).
Design/methodology/approach – The author adopted the index F1 to quantitative critical-scenarios’ coverage of the search space and proposed
the improved particle swarm optimization (IPSO) to enhance exploration ability for higher coverage. Compared with the particle swarm optimization
(PSO), there were three improvements. In the initial phase, the Latin hypercube sampling method was introduced for a uniform distribution of
particles. In the iteration phase, the neighborhood operator was adapted to explore more modals with the particles divided into groups. In the
convergence phase, the convergence judgment and restart strategy were used to explore the search space by avoiding local convergence. Compared
with the Monte Carlo method (MC) and PSO, experiments on the artificial function and critical-scenarios search were carried out to verify the
efficiency and the application effect of the method.
Findings – Results show that IPSO can search for multimodal critical-scenarios comprehensively, with a stricter threshold and fewer samples in the
experiment on critical-scenario search, the coverage of IPSO is 14% higher than PSO and 40% higher than MC.
Originality/value – The critical-scenarios’ coverage of the search space is firstly quantified by the index F1, and the proposed method has higher
search efficiency and coverage for the critical-scenarios search of AVs, which shows application potential for V&V.
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1. Introduction

Scenario-based virtual test of autonomous vehicles (AVs) has
drawn much attention for its advantages of reproducibility, high
efficiency and flexible setting of test cases (Kalra and Susan, 2016;
Zhu, 2019). The scenario, as the basis of the abovemethod, can be
abstracted into three levels of functional, logical and concrete
scenarios, which lay a foundation for automatic virtual tests
(Menzel et al., 2018). Without the scenario-based test, it is not
enough to ensure the safety of AVs by the functional and logical
scenarios generated based knowledge (Schuldt et al., 2018).
Therefore, grid search (GS) and the Monte Carlo method (MC)
are widely applied to generate concrete scenarios based on the
logical scenario. However, searching for the critical-scenarios
essential for verification and validation (V&V) using the above
methods is very costly. Thus, the main problem discussed in this
paper is how to search for the critical-scenarios quickly and
comprehensivelywithin a given search space of the logical scenario.
The critical-scenarios search can be transformed into an

optimization problem with the system under test (SUT) regarded
as a black box. Optimization algorithms have been applied to
the critical-scenarios search of AVs. Beglerovic et al. (2017)
proposed a method based on surrogate models combined
with stochastic optimization to find more critical-scenarios by

less real system evaluations. Tuncali et al. (2018) demonstrated a
way of finding a false vehicle behavior by using simulated
annealing to find critical-scenarios.Masuda et al. (2018) proposed
a method of rule-based searching for collision test cases of AVs.
Mullins et al. (2018) developed adaptive search algorithms to
discover performance boundaries of AVs without estimating the
coverage. Feng et al. (2020) designed a critical scenario searching
method based on multi-start optimization and seed-fill method.
Klischat et al. (2020) used particle swarm optimization (PSO) to
increase the criticality of the simulation scenarios. Zhu et al. (2021)
proposed an optimization searchingmethod to explore the critical-
scenarios in a huge search space faster.
In summary, to verify the safety of AVs, it is necessary to

search for scenarios with high criticality as comprehensively as
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possible (Batsch et al., 2019), especially when the search space
is multimodal. However, most of the research only focuses on
the criticality and search efficiency rather than the critical-
scenarios’ coverage in the search space, which makes the
critical-scenarios insufficient to validate the safety of AVs. With
the critical-scenarios search regarded as an optimization
problem, the search efficiency and critical-scenarios’ coverage
can not be guaranteed to be optimal at the same time based on
the “no free lunch” theorem (Wolpert andMacready, 1997).
In this paper, the critical-scenarios’ coverage of the search

space is firstly quantified by metric F1, which represents the
difference between the space fitted by samples and the ground
truth, and the improved particle swarm optimization (IPSO) is
proposed for higher coverage. The main contributions of this
paper are discussed below.
The critical-scenarios’ coverage in the search space is

proposed and measured by the metric F1 in the scenario-based
test of AVs to evaluate the performance of optimization
algorithms in critical-scenarios search. IPSO is proposed to
search for the multimodal critical-scenarios more
comprehensively by enhancing the exploration ability of PSO in
each phase. By the experiments on the artificial function and
critical-scenarios search, the efficiency and the application
prospect of themethod are verified.
The remainder of this paper is organized into four sections.

Section 2 describes the method. Section 3 describes the
experiments on the multimodal artificial function and critical-
scenarios search to verify the method’s efficiency and
application prospect. Section 4 presents the results and
discussions. Section 5 concludes this paper.

2. Method of critical-scenarios search

In this paper, the decision-making SUT is regarded as a black
box, and the critical-scenarios search is transformed into an
optimization problem by regarding the search space of the
logical scenario as input and the safety evaluation result as
output.
To quantify the critical-scenarios’ coverage in more detail,

the metric F1 based on the image mask operation is adopted as
it compares two spaces pixel-by-pixel. For higher coverage of
the search space, critical-scenarios are searched purposefully
based on IPSO.

2.1 Framework of critical-scenarios search
The framework of the critical-scenarios search applied in this
paper is shown in Figure 1. First, the search space of the logical
scenario D is taken as the input of the optimization algorithm.
Second, based on the D, the optimization algorithm searches
for the parameter of the concrete scenario d. Then, according to
d, the concrete scenario is generated through automatic testing

(Chen et al., 2020). Finally, calculated by the fitness function f,
the evaluation result r of the SUT safety in the concrete
scenario is taken as the output and returned to the optimization
algorithm. According to the previous result, the optimization
algorithm adjusts the d in the next iteration. By iterating and
outputting the critical-scenarios based on the evaluation
criteria, the critical-scenarios set is obtained.

2.2Metric of coverage
For the critical-scenarios search, there is no method to measure
the coverage of the search space as most of the research focuses
on the search efficiency by counting the critical-scenarios in all
samples. In this paper, the metric F1 is adopted to quantify the
coverage of the search space. The method to measure the
coverage is as follows.
First, with the linear fitting method, the samples obtained by

optimization algorithms and GS are transformed into
continuous spaces. With the same high resolution, these
continuous spaces are grided into the matrix, the matrix
obtained from optimization algorithm is called “FittedMatrix,”
and the ground truth obtained by GS is called “True Matrix.”.
Each grid inmatrix is called pixel.
Second, the critical threshold is defined and the image mask

operation is adopted. The pixel whose value is less than the
threshold is defined as the critical-pixel whose flag is 1, and the
others’ flags are 0.
Finally, each pixel’s flag of the True Matrix and Fitted

Matrix are traversed and compared to obtain the “Result
Matrix.” The rule of pixel comparison is shown in Figure 2. If
the pixels of the Fitted Matrix and True Matrix are both 1, the
pixel at the same location of the Result Matrix will be denoted
as true positive (TP). If the pixel of the Fitted Matrix is 0 and
theTrueMatrix is 1, it will be denoted as false negative (FN). If
the pixel of the FittedMatrix and TrueMatrix are both 0, it will
be denoted as true negative (TN). If the pixel of the Fitted
Matrix is 1 and the True Matrix is 0, it will be denoted as false
positive (FP). The number of critical-pixel in the True Matrix
is denoted as T.
We choose the metric to reflect the critical-scenarios’

coverage of the search space objectively. For the critical-
scenarios search problem studied in this paper, the emphasis is
the ratio of TP to T, which is the metric Recall. However, all
pixels can be classified as the critical-pixels if the samples are
few and critical, which keeps the Recall at 100% but is
meaningless. Therefore, to ensure the accuracy of the fitting,
we refer to the F1 as the metric of the coverage, which is the
harmonic average of the Recall and Precision, and balance the
two metrics well. Equations (1) and (2) are the definitions of
the Recall and Precision, and equation (3) is defined to
calculate the F1:

Figure 1 Framework of the critical-scenarios search
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Recall ¼ TP
T

(1)

Precision ¼ TP
TP1FP

(2)

F1 ¼ 2 � Recall � Precision
Recall1Precision

(3)

2.3 Principle of improved particle swarm optimization
To achieve better performance of the optimization algorithm
for the critical-scenarios search, PSO is improved as IPSO in
this paper. Because of its simple principle and fast convergency
speed, PSO has been widely applied for optimization problems
in many fields (Kennedy and Eberhart, 1995). However, PSO
has the defect of premature convergence, which leads to an
insufficient exploration of the search space (Suganthan, 1999).
Therefore, IPSO is proposed for the critical-scenarios search in
this paper. As IPSOwill be applied to the test in the loop, which
costs few seconds each round. By contrast, the time
consumption of IPSO, which is about a few milliseconds, is
negligible; therefore, the time complexity of the IPSO is
compromised to improve the performance of IPSO. The
principle of IPSO is shown in Figure 3, with the improvement
in bold.
First, the position initialization mechanism of particle

swarms is improved. When the randomly initialized particles
are close in the space, it is easy for all particles to fall into the
local optimum, which means premature convergence.
Therefore, to avoid the above situation and pursue
comprehensive exploration of the search space, the Latin
hypercube samplingmethod (McKay et al., 1979) is introduced
into the initialization phase of the particles, which ensures the
initial samples cover the search space uniformly and
comprehensively. Compared with random sampling in the
initial phase of PSO, the general picture of the search space
globally with fewer samples can be obtained by the Latin
hypercube sampling method, which improves the exploration
ability.
Second, the velocity updating mechanism of particle swarms

is improved. The neighborhood operator (Suganthan, 1999) is
adopted in the iteration phase to update the velocity. The
global optimal particle position is replaced with the
neighborhood optimal particle position. Each particle can
explore independently as the particles are divided into groups,
avoiding the fast convergence speed caused by all particles
moving toward the optimal particle. The above improvement
enhances the exploration ability to find multiple modals. The
improved velocity updating is defined in equation (4), where v

is the velocity of the particle, k is the number of iterations, i is
the serial number of the particle, d is the serial number of the
dimension, w is the inertia factor, which shows how well the
particle remembers its velocity in the last iteration, c1 and c2 are
learning factors, which balance exploration and exploitation of
the algorithm, r1 and r2 are the random numbers, which
randomize the algorithm, x is the position of the particle, pbest is
the best position of the particle in its personal history, lbest is the
best position of the particle in its neighborhood. The
calculation of neighborhood is described as follows: N is
the total number of particles. The neighborhood of a particle is
the hypersphere formed with the current position of the particle
as the center and the distance S as the diameter, where S is 1/N
of the maximum Euclidean distance of any two particles in the
search space. The particle finds the best position in its
neighborhood to update velocity at each iteration. If there is no
better position in its neighborhood, the velocity will update
only according to the best position of the particle in its personal
history. To keep the balance between exploration and
exploitation, some parameters are set according to suggestions
of Zhang (2005) in this paper as follows: N = 50, w = 0.8,
c1 = 1.5, c2 = 1.5:

Vk
id¼ wvk�1

id 1 c1r1 pbestid�xk�1
id

� �
1 c2r2 lbestd�xk�1

id

� �

(4)

Finally, convergence judgment and restart strategy are
introduced (Huberman et al., 1997). PSO converges after all
particles fall into the local optimum, which is not conducive to
the later exploration of the search space. Therefore, the
Euclidean distance between any two particles will be calculated
after the position updating at each iteration in IPSO. If the
maximum distance between particles is lower than the
threshold three consecutive times, the algorithm will be judged
as convergence. Then in the next iteration, the Latin hypercube
sampling method will be used to reset the positions of the
particles, with the velocities of the particles reassigned
randomly.

3. Design of experiments

To verify the efficiency and the application effect of the
method, we benchmark IPSO with PSO and MC on the
multimodal artificial function and the practical issue of critical-
scenarios search of AVs. To avoid contingency, the tests are
repeated ten times. With the ground truth based on GS, the
performance of IPSO and the other baseline algorithms is
quantitatively evaluated by F1, themetric of the coverage.

3.1 Experiment onmultimodal artificial function
We test algorithms on the Holder Table function (Bak et al.,
2019) for a fair and general evaluation. The Holder Table
function has many local minima, with four global minima,
which are used to verify each algorithm’s ability to jump out of
the local optimum and find modalities, and it can be seen as an
extreme case of scenario search.
The Holder Table function is shown in equation (5), where

x1 is the value of the first dimension and x2 is of the second:

Figure 2 Rule of pixel comparison
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fðxÞ ¼ �
�����sinðx1Þ � cosðx2Þ � e

����1�
ffiffiffiffiffiffiffiffiffi
x2
1
1 x2

2
P

q ����
����� (5)

To get the ground truth, we first test the Holder Table function
with GS, which needs a trade-off between computation
affordance and sampling accuracy. We discretize the search
space of the Holder Table function and sample based on the
parameters shown inTable 1.
By default, the range of parameters is set to the same of all

dimensions.

The budget for experiments with optimization algorithms is
3,000 samples for the two-dimensional search space.

3.2 Experiment on critical-scenarios search
To illustrate the application prospect, the proposed method is
also applied to a practical issue of AVs’ virtual test. First, the
simulation scenario is constructed, and the search space is
defined. Second, the fitness function is designed. Finally,
virtual tests are carried out with the algorithms.
In this paper, the virtual environment is provided by the

software Virtual Test Drive (Pilz et al., 2019), and the
autonomous driving SUT is also configured by it. The SUThas
functions like emergency braking, emergency lane change and
others with high intelligence. For the virtual test, a typical car-
following scenario on a two-lane straight road is chosen, as
shown in Figure 4. In the initial phase, the ego vehicle E is in
the left lane and follows the front vehicle C1 at a constant speed,
while the vehicle C2 in the right lane runs at a constant speed.
After a while, C1 brakes until standstill, and E responds to this
emergency.

Figure 3 Principle of IPSO

Table 1 Parameters of the test on the Holder Table function

Type of parameters Parameters of low dimensional space

Dimensionality 2
Range of parameters �10 to 10
Grid size 100
Number of samples 10,000
Threshold �18

Multimodal critical-scenarios search method

Tianyue Feng et al.

Journal of Intelligent and Connected Vehicles

Volume 5 · Number 3 · 2022 · 167–176

170



According to the natural traffic conditions and test
requirements, the search space of the car-following scenario is
set, as shown in Table 2. To facilitate the visualization of the
results, the initial velocity of C2 denoted as V2, and the initial
longitudinal distance between C1 and E denoted as S1 are used
as variables for the test. With these two parameters evenly
discretized into 101 parts as samples, the concrete scenarios for
test are generated combinedwith other parameters.
The budget for experiments with optimization algorithms is

1,200 samples for the search space.

3.3 Fitness function for critical-scenarios search
The fitness function of the optimization problem needs to
reflect the goal of the optimization objectively. In the issue of
critical-scenarios search, the fitness function should meet the
test requirements to represent the criticality of the scenarios
accurately, which is beneficial for V&V of AVs.
The fitness function is designed based on the safety

evaluation metric as this paper focuses on the safety of the
decision-making system. The ideal critical-scenarios in the
virtual test are the dangerous scenarios in which the ego car

emergency brake, so time-to-collision (TTC) (Vogel, 2003) of
the ego car is selected as the fitness function. TTC is the ratio of
the relative distance and relative speed of two vehicles, which is
used to represent the potential collision danger in the car-
following scenario. The smaller the TTC produced by the
SUT, the more dangerous the scenario is. Therefore, we take
the smallest TTC value in each scenario of virtual tests and
output it to the optimization algorithm for iteration. In
addition, there are situations where V0 is smaller than V1 all the
time before E changes lanes, in which TTC is increasing. So,
the value of the fitness function is set as 20 s at the beginning of
the scenario. If the TTC is always higher than 20 s in the test,
we claim that the scenario is safe and output the fitness value
the same as the initial value.
Based on the pre-safe brake system of Daimler (Schöneburg

et al., 2019), it is dangerous for the vehicle if TTC is smaller than
0.6 s. To calculate the coverage, the threshold of TTC is set as
0.6 s for the experiment. For a more dangerous scenario, we also
set the threshold as 0.3 s to see the change of the coverage.

4. Results and discussion

4.1 Results of multimodal artificial function
The True Matrix of the Holder Table function is shown in
Figure 5. The deeper the red region is, the smaller the function
value is, which means the sample is more critical. Sample
distribution of all algorithms after 3,000 iterations is shown in
Figure 6. It shows that IPSO searches for four modalities more
comprehensively thanMCandPSO.
The result of coverage is shown in Figure 7, and the analysis

is as follows:
IPSO keeps the highest coverage during iterating, which

means the search efficiency of IPSO is higher than PSO and
MC. For example, when the coverage is 40%, which means at
least one modality has been searched, IPSO takes about 750
samples, while PSO and MC take about 3,000 samples,
meaning the search efficiency of IPSO is 83% higher than PSO
and 158% thanMC.
With 3,000 samples, the coverage of IPSO is about 84%,

which is 40% higher than PSO and MC. It shows the potential
of IPSO in themultimodal critical-scenarios search.

4.2 Results of critical-scenarios search
Results of the virtual test with GS are shown in Figure 8. The
white array points in Figure 8 are 2,601 in total, representing
the scenarios for the virtual test. Based on the test results of the
scenarios, the linear fitting method is adopted to calculate the

Figure 4 Initial phase of the car-following scenario

Table 2 Search space of the car-following scenario

Definition of parameters Symbol of parameters Range of parameters Unit

Initial speed of E V0 30 m/s
Initial speed of C1 V1 20 m/s
Initial speed of C2 V2 10–30 m/s
Initial longitudinal distance between E and C1 S1 10–110 m
Initial longitudinal distance between E and C2 S2 50 m
The time C1 starts to brake TB 4 s
The duration of C1 breaking T 3 s
Duration of a scenario TL 20 s
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Figure 5 True Matrix of the Holder Table function (10,000 samples)

Figure 6 Samples distribution of algorithms (Holder Table, 3,000 samples)

Figure 7 Coverage of algorithms (Holder Table, 3,000 samples)
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True Matrix shown in Figure 8. The deeper the red region is,
the smaller the TTC is, which means the scenario is more
critical. To compare the algorithms intuitively, sample
distribution of all algorithms after 800 iterations is shown in
Figure 9.
With the threshold set as 0.3 s, two modalities of scenarios are

found, as shown in the white dashed outline in Figure 8.
Therefore, the test processes of these twomodalities of the critical-
scenarios are observed. In the first modality in dotted area 1, E
brakes immediately because V0 is greater than V1, and S1 is small
in the initial phase. The secondmodality in dotted area 2 is shown
in Figure 10, which is divided into six phases: In the first phase, the
scenario initializes (Figure 10a); in the second phase (Figure 10b),

C1 brakes; in the third phase (Figure 10c), E starts to brakewhen it
approaches C1, and E cannot change lanes immediately as C2 is
close to it. In the fourth phase (Figure 10d), E decelerates slowly
and approaches C1 until C2 passes C1. In the fifth phase
(Figure 10e), E changes lanes as the next lane is unoccupied; in the
sixth phase (Figure 10f), E completes lane changing and continues
to go straight.
The two modalities of the critical-scenarios discovered based

on the TrueMatrix are both dangerous enough to meet the test
requirements.
With the threshold set as 0.6 s, a bigger region that includes

the above scenarios is filtrated, as shown in the white solid line
outline in Figure 8.

Figure 8 True Matrix of two-dimensional scenario (2,601 samples)

Figure 9 Samples distribution of algorithms (two-dimensional scenario, 800 samples)
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According to calculating the critical-scenarios’ coverage with
different thresholds, the virtual test results of the two-
dimensional scenario are shown in Figure 11. The analysis is as
follows:
Overall, with the increase of iterations, the coverage of each

algorithm shows a rising trend. However, at the beginning of
the iteration, the coverage fluctuates wildly, which is
considered to be due to the inaccurate fitting with few initial
samples. The coverage of IPSO increases rapidly in the initial
phase, and we believe it is due to the improved initialization
mechanism based on the Latin hypercube samplingmethod.
� With 800 samples, the coverage of IPSO is about 14% higher

than PSO and 40% higher thanMCwhen the threshold is set
as 0.3 s, and 3% higher than PSO and 9% higher than MC
when the threshold is set as 0.6 s. It shows that the stricter the

threshold is, the fewer the critical-scenarios that are in the
search space, which means the search is more difficult;
therefore, more highlights the advantages of IPSO.
Because IPSO searches for the critical-scenarios more
comprehensively and quickly by the initialization mechanism
combined with the improved velocity updating mechanism
based on neighborhood operator.

� With 1,200 samples, the coverage of IPSO is about 6%
higher than PSO and 33% higher than MC when the
threshold is set as 0.3 s, and 3% higher than PSO and 8%
higher than MC when the threshold is set as 0.6 s. It is
analyzed that when the threshold is set as 0.3 s, the regions
of critical scenarios are close, which reduces the difficulty
of search compared with the four scattered regions of the
Holder Table.

Figure 10 Test process of the second modality of the critical-scenarios

Figure 11 Coverage of algorithms (two-dimensional scenario, 1,200 samples)

Multimodal critical-scenarios search method

Tianyue Feng et al.

Journal of Intelligent and Connected Vehicles

Volume 5 · Number 3 · 2022 · 167–176

174



In summary, IPSO shows a better performance on efficiency
and coverage in the multimodal critical-scenarios search. With
a stricter threshold (0.3 s) and fewer samples (800), the
coverage of IPSO is 14% higher than PSO and 40%higher than
MC, which means IPSO can accelerate the process of AVs’
V&V effectively.

5. Discussion

5.1 Trade-off between exploration and exploitation
The “no free lunch” theorem tells us no algorithm performs
well on any optimization problems. We need to trade off
between exploration and exploitation based on the problem.
For the critical-scenarios search, the algorithm’s exploration
ability should be improved to guarantee AVs’ safety. However,
most of the research adopts the optimization algorithm to
search for scenarios with more exploitation than exploration,
which may lead to poor algorithm performance on this
problem.

5.2 Cloud computing platforms with swarm intelligent
algorithms
With the popularity of cloud computing platforms, swarm
intelligence algorithms will become more efficient in critical-
scenarios search than other optimization algorithms like
Bayesian optimization as the former can realize parallel
computing, but the latter relies more on the prior knowledge
when searching the critical-scenarios.

6. Conclusions

In this paper, we transformed the critical-scenarios search into
an optimization problem and proposed IPSO to search
modalities of critical-scenarios with F1 quantifying the
coverage. To enhance the exploration ability for a higher
coverage, PSO was improved in three phases. The metric F1
was firstly adopted to quantify the critical-scenarios’ coverage
in detail by comparing fitted space with ground truth pixel-by-
pixel, and it was used to evaluate the optimization algorithms’
performance in critical-scenarios search.
To verify the efficiency and the application prospect of the

method, experiments on the multimodal artificial function and
critical-scenarios search were carried out with MC and PSO as
baselines. Results of the artificial function show that the
proposed method can significantly improve the search
effectiveness and critical-scenarios’ coverage in the multimodal
search space. Results of the critical-scenarios search of the
decision-making system show that the proposed method can
search for multimodal critical-scenarios of AVs effectively,
which accelerates the process of V&V and guarantees the
automated driving safety.
In future work, we will focus on the following aspects:

First, for the neighborhood operation in IPSO, the
constant hypersphere results in slow convergence, which may
weaken the exploitation ability. Variable hypersphere for
the neighborhood operation will be designed further to improve
the tunability of exploration ability. Second, calculation of the
coverage in high dimensional search space is faced with a heavy
burden in matrix comparison. A new metric will be studied for
the high dimensional search space.
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