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Abstract
Purpose – This paper aims to address the longitudinal control problem for person-following robots (PFRs) for the implementation of this technology.
Design/methodology/approach – Nine representative car-following models are analyzed from PFRs application and the linear model and optimal
velocity model/full velocity difference model are qualified and selected in the PFR control.
Findings – A lab PFR with the bar-laser-perception device is developed and tested in the field, and the results indicate that the proposed models
perform well in normal person-following scenarios.
Originality/value – This study fills a gap in the research on PRFs longitudinal control and provides a useful and practical reference on PFRs
longitudinal control for the related research.
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1. Introduction

Person-following scenarios arise when a lead human and an
autonomous robot collaborate on a common task where the
robot needs to follow the leading human’s movements (Islam
et al., 2018). The basic function of a person-following robot
(PFR) is to obtain the position of its leading person (LP) and to
follow the LP continuously during executing a task. In recent
years, the PFR technology has been applied in several domains,
such asmanufacturing, health care, entertainment industry and
social interactions (Ren et al., 2016; Islam, 2018; Cha and
Chung, 2020).
Generally, a complete PFR includes two components,

hardware and a control unit (Figure 1). The hardware of a PFR
includes perception devices, robot chassis systems and energy
systems. The perception device includes an LP position
module and an environment perception module. The former
provides the basic following function for a PFR. Stability and
low latency are required for the LP position perception. The
latter, the environment perception device, is designed for
advanced functions of a PFR, including obstacle avoidance,
gesture identification and route optimization. For some PFRs,

the functions of obtaining LP position and environment are
integrated into one perception device (Ren et al., 2016; Cha
and Chung, 2020; Bao et al., 2017). The control unit is the
essential part of a PFR, analyzing hardware data and
controlling PFR’s hardware. According to its function, control
units can be categorized into the basic and complex following
control units, as shown in Figure 1. The basic following control
unit handles a PFR’s following functions, including analyzing
the data from the LP perception device and calculating a PFR’s
motion at the next calculation period. The basic following
control unit functions as the cerebellum of a human and
controls the basic functions of a PFR. Calculation speed,
stability and low latency are critical to a basic following control
unit. The complex following control unit manages the
advanced functions of PFR, such as analyzing data from
environment perception devices, obstacle avoidance, routing
planning, gesture identification for interaction with the LP and
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interaction with other PFRs in a team following scenario (Bae
et al., 2022; Austria et al., 2021; Minaeian et al., 2017). High
computation power is desirable for complex tasks, such as
image recognition and AI analysis.
The study of longitudinal control involves two main parts of

a PFR, including leading person perception and longitudinal
motion control (Figure 1). The data received from the
perception device working on leading person perception is
the input of the study and the PFR longitudinal motion is the
output of this study.
Although many studies on the PFRs have been conducted in

recent years, most of them focused on perception (Wu et al.,
2021a; Algabri and Choi, 2021) but overlooked controlling,
especially following the LP longitudinally. The linear control
strategy (Olatunji et al., 2020; Satake and Miura, 2009; Le
et al., 2018) is proposed to control a PFR. The governing
equation is a linear function of the gap for longitudinal control.
If a camera is applied to obtain the LP’s position, the gap
between PFR and LP is noted by the number of the LP’s pixels
on the photosensitive sensors (Tarokh et al., 2008). When the
gap increases, the number of pixels of the LP decreases and the
speed increases according to the control strategy. The fuzzy
logic control strategy is proposed to compute the appropriate
velocity for a PFR (Jia et al., 2013). Based on the fuzzy logic, the
gap between the LP and the PFR is divided into five segments,
including “very far”, “far”, “safe distance”, “close” and “very
close” segments. Although the constants for each segment are
different, the governing equations in the longitudinal direction
are still linear functions of the gap. The decision tree is applied
to control a PFR (Kautsar et al., 2019; Ren et al., 2016). The
decision tree covers the basic motions of the PFR, including
stopping, turning, reversing and moving forward. In the
decision tree, the moving forward speed (noted by the
controlling signal PWM) is a linear function of the gap between
the LP and the PFR. The PID controller is introduced in the
PFR longitudinal control (Tarokh andKuo, 2008; Cheng et al.,
2019; Peralta et al., 2018; Zhang et al., 2019). To keep a re-
specified distance during the following, the proportional and
differential components of the PID controller are applied to
control PFR’s speed.
Generally, the studies on the PFR longitudinal control

models are insufficient, rarely discussed independently. As a
result, several longitudinal control exclusive research topics,
including the LP’s motion features, PFR’s following stability
and gap range are still deficient. The current control studies of

the PFR are not enough to handle the high demands of the PFR
including intense speed changes, stop-and-go, LP’s periodic/
random movement and reverse. As a result, reasonable and
practical longitudinal control models for the PFR are required.
The contributions made in this paper can be summarized as

follows: First, the challenges and exclusive features of PFR
longitudinal control are summarized, including reverse, gap
range, no imitation and the LP’s periodic/random movement.
Such challenges and features are the main goals or
requirements for the following studies of PFR longitudinal
control. Second, the knowledge of the car-following/automated
driving control model is introduced into person-following
studies after modification and parameter optimization. Such
knowledge transferring can improve the PFR’s longitudinal
control study. Third, this study provides a comprehensive and
quantifiable evaluation criterion for model and parameter
optimization. Many key features are considered in the
presented evaluation criterion, including motor capacity,
perception devices’ measurement range, energy-saving, gap
range and LP’s using feeling. Fourth, a lab PFR with the bar-
laser-perception device is developed and tested in the field and
the results indicate that the proposed models perform well in
normal person-following scenarios.
The paper is organized as follows. Section 2 states the

exclusive features of PFR longitudinal control; Section 3 revises
nine representative car-following/autonomous driving models
to select appropriated control models for PFRs. Section 4
presents the method of optimizing parameters of the selected
optimization and numerical experiments for illustrating the
application of the selected models are conducted. Finally,
Section 5 introduces our bar-laser-perception device for PFR
developed in-house and reports the field test results.

2. Different features between car-following and
person-following

A car-following model describes and simulates the driver’s
longitudinal reaction during following a leading vehicle in the
same lane. Replacing the leading vehicle with an LP and
replacing the following vehicle with a PFR, a car-following
scenario is similar to a person-following scenario. The similarity
stands out especially considering the recent development of
connected and automated vehicles (Li and Li, 2019;Wu et al.,
2020, 2021a, 2021b). Thus, it is reasonable to introduce the
knowledge of car-following into a person-following scenario.
However, to successfully transfer the knowledge into the PFR

Figure 1 The structure of a person-following robot (PFR)
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control context, the differences between car-following and
person-following need to be addressed. In this section, several
exclusive features of person-following are listed.

2.1 Reverse
Car-following models are meant to describe forward vehicle
dynamics in highway traffic, while they usually do not consider
reverse movements. However, for a PFR, reverse within a small
distance at a slow speed may be needed at times. Two typical
situations required reverse for a PFR. First, when controlling a
PFR in a narrow indoor space where a U-turn is infeasible,
reverse movements at a slow speed are ineluctable. Second, the
LPmay not always stay at a non-negative velocity as vehicles do
and instead, the LP may move slightly backward from time to
time formaneuver convenience in certain tasks.

2.2 Gap range
The research of car-following considers the shortest following
gap for driving safety but usually does not record the longest
gap during operation. For example, if there is no leading vehicle
ahead or the leading vehicle’s speed is too higher to follow, the
subject driver ignores his/her leading vehicle and gets into the
free-drive state, which means the driver control speed by
himself/herself desire. However, for a PFR, the values of
shortest and longest gaps are all important for two reasons.
First, common perception sensors used in PFRs are sensitive to
distance. Once the following gap extends the measurement
range of sensors during operation, the person following
behavior is failed. Second, a PFR may lose its LP during
following with a long gap (particularly at corners or in a
crowded environment). A vehicle can drive without leading
vehicles, but a PFR can’t work without its LP. And it is a low
probability that a PFR can restore after its LP is missing.
Therefore, it is critical to keep a reasonable gap range during
operations for PFRs.

2.3 No imitation
A car-following model is designed to imitate a driver’s behavior
on a highway. Some of the car-followmodels were developed to
explain observed highway traffic phenomena such as shock
wave, traffic oscillation and capacity drop (Zhu, 2001). Even
models for automated vehicle control are often designed to
reproduce a good driver’s control (Milanés and Shladover,
2014). Such imitation also includes a driver’s limitation on
observation and judgment. However, a PFR’s movements are
not necessarily confined by particular human behaviors. The
only purpose of a PFR longitudinal model is to control the
subject PFR to follow its LP reliably and smoothly.

2.4 Leading person’s periodical and randommovements
Human walking or running includes periodical movements
caused by the alternate movements of the legs. When the LP
stops for some reason, such as waiting for a traffic light, the LP
is not as still as a stopped vehicle. Instead, the LP may have
random movements in the longitudinal direction. The LP’s
periodical and random movements do not happen in a car-
following scenario.

3. Model feasibility analysis

Car-following models have been studied for over half a century
(Gazis et al., 1959; Ahmed et al., 2021; Brackstone and
Mcdonald, 1999), andmany types of models are well developed
and wildly-used in traffic simulation and vehicle control. In this
section, nine types of car-following/autonomous driving models
are revised to select appropriated control models for PFRs
based on the exclusive features of PFRs listed in Section 2.

3.1 Gazis Herman Rotherymodel
The GHR model was first introduced in the year 1958 and its
formulation is:

an tð Þ ¼ cvmn tð Þ Dvn t � Dtð Þ
Dxn t � Dtð Þ� �l (1)

here, an(t) and vn(t) are the acceleration and speed of the
subject vehicle (indexed by n) at time t; Dxn(s²):= xn�1(s²) �xn
(s²) and Dvn(s²):= vn�1(s²) �vn (s²) are the following gap and
the speed difference between the subject vehicle and its lead
vehicle (indexed by n� 1), respectively;Dt is the driver reaction
time; m, l and c are the coefficients that may be calibrated with
real-world data. The GHR model were configurated into
different forms including General Motors model (Chandler
and Montroll, 1958) with m = 0 and l = 0, Herman, Montroll,
Potts and Rothery’s model (Herman and Rothery, 1965) and
Herman and Potts’s model (Lasdon et al., 1959) with m = 0
and l =1, Treiterer and Myers’s model (Treiterer and Myers,
1974) with m = 0.7/0.2 and l = 2.5/1.6. Ozaki’s model (Ozaki,
1993) withm= 0.9/�0.2 and l = 1/0.2.
From equation (1), the subject vehicle’s acceleration is

proportional to a power term of its speed, the speed difference
between the follower and the leader and a power term of
the space headway. Note that equation (1) indicates that the
control as required acceleration (the left-hand side) is zero if the
speed difference Dvn(t�Dt) is zero regardless of the value of
following gap Dxn(t� Dt). Thus, this control logic cannot easily
maintain the following gap in the required gap range to a target
value if the LP and the PFR are about at the same speed, which
violates the feature specified in Section 2.2.

3.2 Psychophysical models
The first discussion of these models was given by Michaels
(Michaels, 1963). The basic concept is that a car following is
divided into several phases, and these phases are determined by
some threshold values by the drivers (Wiedemann, 1974).
Multiple phases are introduced to mimic a driver’s decision
process and the threshold values describe the perception
limitation of humans. Although the psychophysical models are
suitable to describe drivers’ behavior of thinking and
perception, such imitation of drivers’ observation and analysis
limitations is not necessary for PFRs. The psychophysical
models violate the feature specified in Section 2.3.

3.3 Cellular automatamodel
The cellular automata model was first proposed by Nagel and
Schreckenberg (1992). The model takes time and space as
discrete variables, and a road lane is represented by many cells
with equal sizes [typically 7.5-m long, according to Cha and
Chung (2020)], which can either be empty or occupied by at
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most one vehicle. The longitudinal movements of vehicles at
each time step are described by implementing acceleration,
braking, randomization and driving rules for all vehicles. The
models are computationally efficient for large-scale simulation,
yet they are not designed to capture detailed and precise
microscopic movements due to the discretization of time and
space. Thus, they are not suitable for microscopic control or
PFRs over continuous time and space.

3.4 Collision avoidancemodel
In a collision avoidance model, the subject vehicle always
maintains a safe distance from the leading vehicle and the
subject vehicle will finally stop with a minimum acceptance
gap to the leading vehicle when the leading vehicle brakes.
The major development of the collision-avoidance model is
made by Gipps (1981), and the widely used governing
equation is:

vn tð Þ ¼ minfvn t � Dtð Þ12:5anDt 1� vn t � Dtð Þ=Vn
� �

0:0251 vn t � Dtð Þ=Vn
� �1=2

;

bnDt1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bn2Dt2 � 2bn xn�1 t � Dtð Þ � ln�1 � xn t � Dtð Þ � vn t � Dtð ÞDt

� �
� bnv2n�1 t � Dtð Þ=b̂

q
g

(2)

where Vn is the desire speed for the subject vehicle, an is the
acceleration of the subject vehicle, bn is the maximum
deceleration of the subject vehicle, b̂ is the maximum
deceleration of the leading vehicle based on the expectation of
subject vehicle. The first part of equation (2) describes a free
drive state and the second part illustrates the following state.
Note that the computation of the safety speed component in

equation (2) assumes non-negative speeds for both the subject
and lead vehicles (or otherwise, the square root term would not
be well defined). Thus, the collision-avoidance model does not
fit the PFR control that needs to accommodate occasional
reverse movements. The collision avoidance model violates the
feature specified in Section 2.1.

3.5 Linearmodels
Helly model (Helly, 1959) is a widely used linear model. A
desire following gap from the lead vehicle is introduced in this
model, and the subject vehicle tries to maintain the desire
following gap. The governing equation is:

an tð Þ ¼ C1Dvn t � Dtð Þ1C2 Dxn t � Dtð Þ �Dn tð Þ� �
(3)

whereDn(t) is defined as:

Dn tð Þ ¼ D0 1C3vn tð Þ (4)

where C1,C2,C2 are constant coefficients. Dn(t) is the desire
following gap. D0 is the desire following gap when speed is 0. It
is convenient to control the following gap by adjusting the
parameters of Dn(t) directly. The concept of maintaining a
target following gap is also applicable to the PFR longitudinal
control.
We note that the linear model is suitable for the PFR control,

as they accommodate reverse movements and have sufficient
flexible parameters to be calibrated based on PFR applications.

3.6 Optimal velocity model
Bando et al. (1995) proposed an optimal velocity model
(OVM) for car-following stimulation. The OVM is based on
the idea that the subject vehicle desires to maintain an optimal
velocity at any time, depending on the following gap from the
leading vehicle. The driver tries to reduce the difference
between the desired optimal velocity and its actual velocity in

the car-following operation. Several key properties of real-
world traffic flows can be described by OVM, such as the
instability of traffic flow, the evolution of traffic congestion and
the formation of stop-and-go waves (Jiang et al., 2001). The
governing equation is:

an tð Þ ¼ k V Dxn t � Dtð Þ� �
� vn t � Dtð Þ� �

(5)

where k is a sensitivity constant and V(s²) is the optimal
velocity that the driver prefers. The optimal velocity function is:

V Dxð Þ ¼ V1 1V2tanh C1 Dxð Þ � C2½ � (6)

where Dx is the gap between the subject vehicle and the leading
vehicle; V1,V2,C1,C2 are constant parameters, which need to
adjust for different PFRs sensors and speed requirements.
We note that the OV based models are suitable for the PFR

control, as they accommodate reverse movements and have
sufficient flexible parameters to be calibrated based on PFR
applications.

3.7 Full velocity differencemodel
To control the values of acceleration and deceleration more
smoothly, the full velocity difference model (FVDM) is
proposed based on OVM (Jiang et al., 2001) and the governing
equation is:

an tð Þ ¼ k V Dx t � Dtð Þð Þ � vn t � Dtð Þ� �
1 lH Dvn t � Dtð Þ� �

Dvn t � Dtð Þ1 bH �Dvn t � Dtð Þ� �
Dvn t � Dtð Þ (7)

where the H is the Heaviside function, k is a sensitivity
constant, l is the sensitive constant for acceleration and b is
the sensitive constant for deceleration. It is noteworthy that the
first part of equation (7) is OVM, the second and third parts of
equations (7) are modifications for acceleration and
deceleration, respectively.
We note that the FVDM inherits most features and

advantages of OVM and is suitable for the PFR control for the
same reasons as OVM. It is worth noting that the equation (7)
simplified to the OVM governing equation (5) when the l and
b are 0. To study conveniently, the OVM model and FVDM
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model will be considered as OVM/FVDM model in the
following part.

3.8 Intelligent drivermodel
The intelligent driver model (IDM) (Treiber et al., 2000) has
been applied in traffic simulation and wildly used for the ACC
control of production vehicles. The governingmodel is:

an tð Þ ¼ a 1� vn t � Dtð Þ
v0

� �d

�
s0 1 vn t � Dtð Þb 1

vn t�Dtð Þdv
2
ffiffiffiffiffiffi
abn

p

Dx t � Dtð Þ

 !" #

(8)

where v0 is the desired speed in the free flow, s0 is the vehicle-
vehicle clearance in stand-still situations, b is the minimum
steady-state time gap, a is the subject vehicle’s maximum
acceleration, bn is the subject vehicle’s desired deceleration, d is
free acceleration exponent (i.e. taking a value of 4).
The first two terms of equation (8), a 1� vn

v0

� �4h i
, describe

the subject vehicle’s behavior in the free flow. The last

component of equation (8), a
s0 1 vnb 1 vndv

2
ffiffiffiffi
abn

p
Dx

� �
describes the

deceleration caused by the lead vehicle. Note that these terms
are not compatible to negative speed due to the power and
square-root operators. Thus, the IDM violates the feature
specified in Section 2.1.

3.9 Adaptive cruise control and cooperative adaptive
cruise control models
Adaptive cruise control (ACC) and cooperative ACC (CACC)
models were developed for automated vehicle control, while
the latter considers additional vehicle-to-vehicle
communications. Well-known ACC and CACC control
models developed by PATH (Milanés and Shladover, 2014)
are shown in equations (9) and (10).
The ACC governing equation is:

an tð Þ ¼ k1 Dx t � Dtð Þ � vn t � Dtð ÞDt
� �

1 k2Dvn t � Dtð Þ
(9)

where k1 and k2 are the sensitive coefficients for the following
gap and the speed difference, respectively.
TheCACC governing equation is:

vn tð Þ ¼ vn�1 t � Dtð Þ1 kpen 1 kden (10)

where en = Dx(t�Dt) �vn(t�Dt)Dt, kp and kd are sensitive
constants for gap and speed difference.
It is worth noting that although equations (10) and (11) are

control functions for ACC and CACC, respectively, both of
them are linear functions with sensitive constants for gap and
speed difference. Mathematically, the control functions for
ACC and CACC belong to the linear models with the same
form of equation (3) as discussed before.

3.10Model feasibility analysis results
In conclusion, the nine types of car-following/automated
vehicle control models have been analyzed from the aspect of
PFR applications. The results are listed in Table 1, and only the

OVM/FVDMmodel and the linear model (including ACC and
CACC in PATH) are available to the PFRs.

4. Parameter optimization

The PFRs are different from automated vehicles in their sizes,
speeds, purposes and operating environments. As a result, the
parameters of car-following models need to be adjusted and
optimized to suit RFPs applications. In this section, the topic of
parameter optimization is discussed. Section 4.1 introduces the
evaluation criterion for evaluating the parameters. Section 4.2
introduces the important inputs vLP(t) and «(t) for parameter
optimization. Section 4.3 presents the numerical experiments
for the linear model and theOVM/FVDM.

4.1 Evaluation criterion
The evaluation criterion for PFRs longitudinal control is a
complex study. Many features should be considered in the
parameter optimization, such as PFRs’ motor capacity and
perception devices’ measurement range, energy-saving, gap
range and LP’s using feeling. In this study, the parameter
optimization is described as an optimization problem and the
objective function is:

min
C

aGA 1 bAM 1 gAA 1 dSD
� �

(11)

subject to:

GA ¼

X
0�m�M

jg tmð Þj
M

(12)

AM ¼ max
0�m�M

jaPFR tmð Þj (13)

AA ¼

X
0�m�M

jaPFR tmð Þj
M

(14)

SD ¼

X
1�m�M

jvPFR tmð Þ � vLP tm�1ð Þj
M

(15)

aPFR tmð Þ ¼ f g tm�1ð Þ; vg tm�1ð Þ; vPFR tm�1ð Þ;C
	 


; 8m 2 1;M½ �
(16)

g tmð Þ ¼ xLP tmð Þ � xFPR tmð Þ1 « tmð Þ; 8m 2 0;M½ � (17)

vg tmð Þ ¼ g tmð Þ � g tm�1ð Þ
Dt

; 8m 2 1;M½ � (18)

vPFR tmð Þ ¼ vPFR tm�1ð Þ1 aPFR tmð Þ Dt; 8m 2 1;M½ �
(19)
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xFPR tmð Þ ¼ xFPR tm�1ð Þ1 vFPR tm�1ð Þ Dt; 8m 2 1;M½ �
(20)

xLP tmð Þ ¼ xLP tm�1ð Þ1 vLP tm�1ð Þ Dt; 8m 2 1;M½ �
(21)

max
0�m�M

g tmð Þð Þ � min
0�m�M

g tmð Þð Þ < gmax (22)

max
0�m�M

aPFR tmð Þ
	 


� amax (23)

M ¼ T
Dt

(24)

where C is the set of parameters to be optimized; T is the
operation time for parameter optimization; Dt is PFR’s system
interval, which is depend on perception devices frequency,
computation speed and motor’s reaction time; m is an integer;
M is the total number of Dt in T; tm:=mDt is the discrete time at
mDt; vLP(t) is a given LP’s moving speed for parameter
optimization at time t; xLP(t) is LP’s position at time t; aPFR(t) is
PFR’s acceleration calculated by person following control
model f(s²), vPFR(t) is PFR’s speed at time t; xPFR(t) is PFR’s
position at time t; g(t) is the observed following gap between LP
and PFR by PFR’s perception devices at time t; vg(t) is the
observed following gap changing speed; «(t) is a given LP’s
periodical and random movements at time t; GA is the mean
value of the following gap in T; AA is the mean value of
acceleration of the PFR in T; AM is the maximum acceleration/
deceleration in T; SD is the mean value of speed difference
between PFR and LP; a, b , g and d are the weights ofGA,AM,
AA and SD; gmax is the maximum tolerable gap range for the
testing PFR, and gmax is limited by the PFR’s perception device;
amax is themaximum tolerable acceleration of the PFR and amax

is depend on PFR’s motor capacity and PFR’s weight.
Equation (11) is the objective function of parameter

optimization, where GA is the mean value of the following gap
and a smaller value of GA indicates better performance at
corners or in a crowded environment. AA is the average
acceleration of the PFR and a smaller value of AA indicates
better performance on energy conservation and endurance. AM

is the maximum acceleration/deceleration and a smaller value
ofAM indicates the following process is smoother and demands
less PFR’s motor capacity. SD is the speed difference between
LP and PFR and a smaller value of SD indicates the PFR can

better filter periodical and random movements while
maintaining the same speed with the LP. a, b , g and d are the
weights of GA, AM, AA and SD. Different requirements of PFR
need different values of weights. For example, relatively large
values of b and g (weights of AM and AA) are desired for the
PFRdesigned for carrying a large load.
Equations (12)–(15) are the definitions of GA, AM, AA and

SD, equation (16) is the longitudinal control model for PFR.
Equation (17) is the definition of the observed following gap
between LP and PFR by the PFR’s perception devices g(s²) and
the LP’s periodical and random movements «(s²) is included.
Equations (18)–(21) are the formulas of vg(s²), vPFR(s²),
xPFR(s²), xLP(s²). Equation (22) is the gap range requirement,
which has been discussed in Section 2.2. Threshold gmax is
determined by the sensors used by PFRs and working
scenarios. Equation (23) is the PFR’s postulate of the motor
power, brake capability of the PFR. As this study investigates
PFRs with an electric powertrain (i.e. controlled by themotor’s
torque), their deceleration and acceleration capabilities are
symmetric. Thus, themaximum acceleration and theminimum
accelerations are set with same magnitude (or with the same
absolute value) amax.
It is worth noting that vLP and « are important inputs for

parameter optimization. They describe the LP’s behavior, and
their values determine the optimization scenarios for the PFR
longitudinal control. The setting of vLP and « will be discussed
in Section 4.2.

4.2 Leading personmotion for parameter optimization
The values of vLP and « for parameter optimization should
cover mostly LP’s motions. For different person following
requirements, the setting of vLP and « should be adjusted
correspondingly. In a slow following speed scenario, such as
following elders or individuals with disabilities, the value of vLP

should represent a low speed and mild acceleration. And the
value of « should be low frequency. If the PFR is designed to
follow adults and children, the value of vLP should
accommodate certain drastic motions, such as running and
stop-and-go. The value of « should denote a high frequency
with a large amplitude.
The vLP applied in this study covers several representative

LP’s motions, such as stop, acceleration, deceleration and
reverse. The vLP is set to be equation (25). The total length is
120 s, the maximum speed is 3m/s; five acceleration-
deceleration cycles are included; the acceleration magnitude
increases from 0.25 to 0.75m/s2; the deceleration magnitude
increases from �0.25 to �0.75m/s2; 30 s with speed is 0 m/s;

Table 1 Car-following model feasibility analysis results for PFRs

Model type Applicable for PFR?
Parameters need to calibrate (if YES)/
Reasons (if NO)

GHR NO Violates the feature specified in Section 2.1
Psychophysical model NO Violates the feature specified in Section 2.1
Cellular automata model NO Discrete results are not working for PFR
CA model NO Violates the feature specified in Section 2.1
Linear model/CACC and ACC control functions in PATH YES Parameter C1,C2,C3,D0
OVM/FVDM YES V(s²) and k ,l , b
IDM NO Violates the feature specified in Section 2.1
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16 s with speed is negative. The figure of vLP(t) is shown in
Figure 2:

vLP tð Þ ¼

0;
0:25t � 0:5;

1;
�0:25t1 3:5;

�0:5;
0:25t � 5:5

0:375t � 8:25;
1:5;

�0:375t1 14:25;
�0:75;

0:375t � 17:25
0:5t � 23;

2;
�0:5t130;

0;
0:625t � 43:75;

2:5;
�0:625t1 55;

0;
0:75t � 73:5;

3;
�0:75t1 84

0;

0 � t < 2
2 � t < 6
6 � t < 10
10 � t < 16
16 � t < 20
20 � t < 22
22 � t < 26
26 � t < 34
34 � t < 40
40 � t < 44
44 � t < 46
46 � t < 50
50 � t < 56
56 � t < 60
60 � t < 70
70 � t < 74
74 � t < 84
84 � t < 88
88 � t < 98
98 � t < 102
102 � t < 108
108 � t < 112
112 � t � 120

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(25)

In this study, «(t) is set to be 0.03 sin (tp). The frequency is
0.5Hz and the amplitude is 3 cm. The «(t) is designed to
simulate the LP’s body periodical movements duringwalking.

4.3 Numerical experiments and results
A MATLAB program is coded for parameter optimization.
Different following models and parameters are applied in this
program. The gmax and amax values are set as 0.5 m and 2m/s2,
respectively. Dt is set as 0.1 s. The a, b , g and d values in
equation (11) are set as 1,1,1 and 10, respectively.

4.3.1 Linear model
The linear model governing equations are equations (3)–(4). In
the numerical experiments, the value of C1 is confined between
0 and 20 with an incremental interval of 1; C2 is confined
between 0 and 200 with an incremental interval of 3, C3 is
confined between 0.05 and 0.15 with an incremental interval of

0.05. Therefore, 4158 (21 � 66 � 3) sets of C1, C2 and C3

values are tested.D0 is fixed at 0.2m :
The calculation results of aGA 1 bAM 1 gGA 1 dSD in

equation (11) for each set of parameters are shown in Figure 3.
The y-axis shows the value of parameter C1; x-axis shows the
value of parameter C2; the upper figure in Figure 3 shows
the results with C3 =0.05, the middle figure with C3 = 0.1 and
the lower figure with C3 = 0.15. The sets of parameters not
satisfying equations (22)–(23) are eliminated (the white part in
Figure 3). The minimum value of aGA 1 bAM 1 gAA 1 dSD

is 2.2233, as marked with a white rectangle at C1 = 12, C2 = 3
and C3 = 0.05 in Figure 3. With this, {C1 = 12, C2 = 3, C3 =
0.05} is the optimal parameter set we found for the linear
model; i.e. the optimal linear model for PFR is shown as:

aPFR tð Þ ¼ 12vg t � Dtð Þ13 g t � Dtð Þ � 0:2� 0:05vPFR tð Þ
� �

(26)

4.3.2 Optimal velocity model/full velocity difference model
Based on the optimal velocity model equation (6) for car-
following, the PFR’s optimal velocity function V(g) for the
parameter optimization is modified as:

V gð Þ ¼ 2:513tanh 0:0055 g � 0:15ð Þ � 1:57½ � (27)

where the relationship between gap g and optimal velocity V is
shown in Figure 4, the optimal speed range is [�0.45, 5.39] to
allow for a small negative speed. Note that when g is shorter
than 217mm, the optimal speed value is negative for the
requirement of reverse.
The function of OVM/FVDM is shown in equation (7). As

PFRs investigated in this study apply an electric powertrain (i.e.
acceleration and brake both controlled by the motor’s torque),
the acceleration and deceleration processes of a PFR are
symmetric. Thus, the parameters of l and b in equation (7)
are set to be equal for the PFR control.
In the numerical experiments, the value of k is confined

between 0.5 and 24 with an incremental interval of 0.5; and l is
confined between�20 and 20 with an incremental interval of 1.
As a result, 1968 (48� 41) sets of parameters of k and l values
are tested.
The calculation result of aGA 1 bAM 1 gAA 1 dSD in

equation (11) for each set of parameters are shown in Figure 5.
The x-axis shows the value of parameter l ; y-axis shows the
value of parameter k . The sets of parameters not subject to

Figure 2 The LP speed vLP for parameter optimization

Person-following robots

Liang Wang, Jiaming Wu, Xiaopeng Li, Zhaohui Wu and Lin Zhu

Journal of Intelligent and Connected Vehicles

Volume 5 · Number 2 · 2022 · 88–98

94



equations (22)–(23) are eliminated (white part in Figure 5).
The minimum value is 2.2897, where is marked with a white
rectangle at k = 12 and l = 3 in Figure 5. The parameter set
k = 12 and l = 3 is the result of the parameter optimization for
the OVM/FVDM.The optimized function of OVM/FVDM for
PFR is shown as:

aPFR tð Þ ¼ 12 V g t � Dtð Þ� �
� vPFR t � Dtð Þ� �

1 3vg t � Dtð Þ
(28)

5. Experiment

A designed PFR with the bar-laser-perception device is
developed and tested in the field. The PFR design is introduced

in Section 5.1, and the experiment results are shown in Section
5.2.

5.1 Person-following robot design
As shown in Figure 6, a four wheels PFR is designed. The front
two Servo Motor wheels can rotate with different velocities to
move and turn. The maximum power is 150 w for each. The
motor’s real-time speeds are available. The two castor wheels at
the rear part support the PFR. The chassis can be simplified as
a two-wheeled differential drivemodel.
The LP perception device has the bar-laser-perception

device. As shown in Figure 10, the bar-laser-perception device
has two bars, which can move freely through the universal
joints. The two bars are connected by a hinge joint. By
measuring the distances between the universal joints and plates
on both sides, the relative position between PFR and LP can be
calculated. The measurement range of the bar-laser-
perception-device is 800mm. The laser range finder type is
WT-VL53-485, with 63% testing error and the maximum
measurement frequency is 20Hz.
The control unit is Arduino Mega 2560, the interface

protocols are RS-485 and Modbus. Different car-following
models and different parameters can be applied. The
calculation frequency is set to 10Hz. The data from the
perception device andmotor can be recorded into an SD card.

5.2 Data analysis
Standing, acceleration, deceleration and reverse are tested.
Two runs for the linear model and two runs for the OVM/
FVDM are recorded. Each record length is about 1 min. The
maximum speed is 3.3m/s. The maximum reverse speed is
1.7m/s.
The LP’s following gap is measured by the bar-laser-

perception device. The right and left laser range finder’s
measurements are noted as dot lines in Figure 7, and the
following gaps calculated by the control unit of the PFR are
noted as a solid line.

Figure 4 Optimal velocity for PFR

Figure 5 OVM/FVDM numerical experiment resultsFigure 3 Linear models numerical experiment results
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The experiment records are shown in Figure 8, the linear model
experiment record is shown in Figure 8(a) and the OVM/
FVDM record is shown in Figure 8(b). We see that in the
results for both models, the PFR responds to the LP’s motions
properly and keeps the gap range in 370mm for the linear
model and 330mm for the OVM/FVDM. Both models can
control PFR along the longitudinal direction in normal person-
following scenarios.
Compared with the numerical simulation, the field test result

acceleration is smaller. This may be caused by the PID setting
of the motor controller, and the motors can reach the designed
acceleration with a small lag.

6. Conclusion

The studies on the PFR longitudinal control models are
insufficient, rarely discussed independently and many
longitudinal control exclusive research topics, including the
LP’s motion features, PFR’s following stability and gap range
are still deficient. This study supplies a gap in the research on
PRFs longitudinal control and provides useful and practical
references on PFRs longitudinal control for the related
research. The works of this study can be summarized as
follows:
� The exclusive features of PFR longitudinal control,

including reverse, gap range, no imitation and the LP’s
periodic/random movement are presented, which are the
main goals or requirements for the following study of PFR
longitudinal control.

� The knowledge of the car-following/automated driving
control model is successfully introduced into person-
following studies. Nine widely used car-following models
are analyzed from PFRs application, and the linear models
and OVM/FVDMmodels are selected for PFRs.

� The method of parameter optimization for PFRs is
presented. In this study, the parameter optimization is
described as an optimization problem, and the objective

Figure 6 The design of a person-following robot in the experiment: (a) the PFR model; (b) the PFR in the experiment

Figure 7 Gap perception based on the right and left laser range
finders’measurements

Figure 8 The following gaps and PFRs speeds of test records: (a) the linear model; (b) the OVM/FVDM
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function covers key features of the PFR’s longitudinal
control, including motor capacity, perception devices’
measurement range, energy-saving, gap range and LP’s
using feeling. The presented parameter optimization
method has been successfully applied in the linear model
and the OVM/FVDM.

� This study also develops a lab PFR with the bar-laser-
perception device for the field tests, and the test results
indicate that the proposed longitudinal control models can
deal with standing, acceleration, deceleration and reverse
in normal person-following scenarios.

There are areas where this paper can be improved in future
studies. First, the study of longitudinal control for the PFR will
conduct targeted research on different LPs, including child,
athlete, adult and elders and even extended the person
following robot to the bicycle following robot. Second, the
studies of lateral control, obstacle avoidance and routing
planning should be integrated into the longitudinal control
study to deal withmore complex following scenarios.
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