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Abstract
Purpose – It would take billions of miles’ field road testing to demonstrate that the safety of automated vehicle is statistically significantly higher
than the safety of human driving because that the accident of vehicle is rare event.
Design/methodology/approach – This paper proposes an accelerated testing method for automated vehicles safety evaluation based on improved
importance sampling (IS) techniques. Taking the typical cut-in scenario as example, the proposed method extracts the critical variables of the
scenario. Then, the distributions of critical variables are statistically fitted. The genetic algorithm is used to calculate the optimal IS parameters by
solving an optimization problem. Considering the error of distribution fitting, the result is modified so that it can accurately reveal the safety benefits
of automated vehicles in the real world.
Findings – Based on the naturalistic driving data in Shanghai, the proposed method is validated by simulation. The result shows that compared
with the existing methods, the proposed method improves the test efficiency by 35 per cent, and the accuracy of accelerated test result is
increased by 23 per cent.
Originality/value – This paper has three contributions. First, the genetic algorithm is used to calculate IS parameters, which improves the efficiency
of test. Second, the result of test is modified by the error correction parameter, which improves the accuracy of test result. Third, typical high-risk
cut-in scenarios in China are analyzed, and the proposed method is validated by simulation.
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1. Introduction

According to traffic accident statistics reports, human factor is
the main cause of traffic accidents. It is estimated that over 90
per cent accidents in motor crashes are because of drivers’ error
(National Highway Traffic Safety Administration, 2015).
Therefore, the automated vehicle (AV) is considered as the key
technique to improve traffic safety. When an AV drives in real-
world roads, it needs to deal with various and complicated
traffic conditions. Therefore, AVs must be tested before they
can be permitted to travel on the road, otherwise the AVs will be
a threat to other traffic participants. However, according to the
study by Kalra and Paddock (2016), it would take
approximately 5 billion miles to demonstrate that the safety of
AV is statistically significantly higher than the safety of human
driving because of the very small probability of human driving
accidents. And with a fleet of 100 AVs being field test-driven
24 h a day, 365 days a year at an average speed of 25 miles per
hour, this would take about 225 years. Even by simulation,

the test time required is still very long without acceleration
because of the huge scenarios and long driving-testing distance.
However, the existing studies pay more attention to the
construction of scenario libraries (e.g. Pegasus [Federal
Ministry for Economic Affairs and Energy (BMWi), 2016],
enableS3 (The Enable-S3 Consortium, 2016), etc.) and test
tools development (e.g. software-in-loop (Russo et al., 2007),
hardware-in-loop (Gietelink et al., 2006) and vehicle in the
loop (Berg et al., 2016)). The studies of accelerated testing
method are neglected. Therefore, the accelerated method of
automated loading of the re-sampled driving scenarios
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should be concerned so that the safety benefits of AVs can be
effectively evaluated. This scenario acceleration method can
be applied to simulation test and provide scenarios for
hardware-in-loop test, driving simulator test and controlled
test bed (e.g. Mcity).
This paper proposes an accelerated testing method for AVs

(Level 2 to Level 5) safety evaluation based on improved
importance sampling (IS) techniques. This paper uses the
occurrence of high-risk event, such as conflict, crash and injury,
to evaluate safety of AV. The high-risk events are identified by
indirect indicators such as Time to Collision (TTC) and
headway. Taking the typical cut-in scenarios as example, the
proposed method extracts the critical variables of the scenario.
Based on IS techniques, the scenarios with higher probability of
occurrence of high-risk events are reconstructed to test the
AVs. The result of test is modified by the error correction
parameter which is calibrated by the empirical data, so that
the safety benefits of AVs in the real world can be revealed.
Finally, based on the naturalistic driving data in Shanghai,
the proposed method is validated by simulation. Besides the
IS accelerated testing method, the detailed contributions of
this paper are as follows. First, the genetic algorithm (GA) is
used to calculate the optimal IS parameters by solving an
optimization problem, which improves the efficiency of
accelerated testing. Second, based on the empirical data, the
result of test is modified by the error correction parameter,
which solves the problem in existing studies that the conflict
rate in accelerated testing result is inconsistent with the
conflict rate calculated by the empirical data. Third, based
on the naturalistic driving data in Shanghai, typical high-risk
cut-in scenarios in China are analyzed, and the proposed
method is validated by simulation.
The rest of this paper is organized as follows. Section 2

presents the literature review of existing methods of AVs
testing. Section 3 introduces the proposed accelerated testing
method for AVs safety evaluation in detail. Section 4 verifies the
proposed method by simulation based on naturalistic driving
data in Shanghai. Section 5 presents the conclusion and future
research needs.

2. Literature review

The test of AV requires a combination of test tools and test
methods. Test tools provide facilities and test methods provide
theoretical guidance for the test. This paper focuses on test
methods because of the larger potential for accelerated testing
and their theory significance. In existing studies, there are four
main methods for AVs testing: Monte Carlo simulation, test
matrix, worst-case scenario evaluation (WCSE) and accelerated
evaluation. The above fourmethods are reviewed in this section.
Monte Carlo simulation is a stochastic method. The AVs are

tested in the scenarios generated stochastically based on a
certain distribution. Touran et al. (1999) evaluated the safety of
autonomous intelligent cruise control model by Monte Carlo
simulation. The values of some parameters in the model were
obtained randomly based on a certain distribution. Althoff and
Mergel (2011) evaluated the collision risk for autonomous
vehicles when executing a planned maneuver by Monte Carlo
simulation. The initial states in simulation were generated
randomly according to a piecewise constant probability

distribution. With the advent of naturalistic driving projects
around the world in recent years, some studies began to build
stochastic models based on naturalistic driving big data and
carry out Monte Carlo simulations to evaluate AVs. Yang and
Peng (2010); Lee (2004) and Woodrooffe et al. (2014) all
evaluated the collision avoidance systems of vehicles by
Monte Carlo simulation based on naturalistic driving big
data. The advantage of Monte Carlo simulation is stochastic
scenarios. However, in the simulation of rare events (such as
collision), the number of tests required will be very large
because of randomness.
Test matrix method is to predefine a “test matrix” consisting

of a variety of typical scenarios based on past crash data and
expert knowledge. Then the test matrix is used to test some
properties (such as safety benefit) of AVs. The test matrix
method is the basis of many test studies, such as autonomous
emergency braking (AEB) protocol (Euro, N.C.A.P., 2013),
CAMP (Deering, 2002), HASTE (Carsten et al., 2005), AIDE
(Kussmann et al., 2004), TRACE (Karabatsou et al., 2007),
APROSYS (Wohllebe et al., 2004) and ASSESS (Bühne et al.,
2012). The advantage of the test matrix method is efficient,
credible and repeatable. Applying test matrix method to
evaluate low-level AVs is straightforward and it might
continue to be the selected approach in the near future
(Zhao et al., 2017a). However, test scenarios in the test
matrix are predefined and fixed. The scenarios predefined
based on crash data cannot test the AVs comprehensively.
And the test cannot reveal the properties of AVs in real-
world conditions, especially in complicated mixed traffic
flows.
WCSEmethodology evaluates the control system of a vehicle

by generating worst scenario (Ma and Huei, 1999; Kou, 2010).
WCSE can be expressed as an optimization problem that
searches for the worst scenario. The scenario is quantitatively
evaluated by a cost function, and the goal of WCSE is to search
for the scenario with the largest cost. WCSE can identify the
weakness in the control system of an AV. But WCSE does not
correlate the worst scenario with real-world scenarios, and the
probability of occurrence of worst-case scenario in real world
cannot be identified.
Accelerated evaluation is a data (such as naturalistic

driving data)-based testing method. High-risk scenarios are
more efficient than normal scenarios in AV testing.
However, high-risk scenarios are rare events in naturalistic
driving data. Accelerated evaluation method modifies the
distribution of real-world data so that the high-risk scenarios
have a higher probability of occurrence. Zhao et al. (2015)
extracted the car-following scenarios in naturalistic driving
data and used models to fit the critical variables in the
scenarios. The most frequent scenarios are deleted to
increase the overall exposure rate for critical scenarios.
However, this method cannot evaluate the safety benefits of
AVs in real world. Considering this problem, Zhao et al.
(2017a, 2017b) applied the IS technique to AVs testing and
studied the cut-in and car-following scenarios. The
distribution of critical variables was modified to increase the
probability of occurrence of high-risk scenarios and reduce
the number of required tests. Then, the IS technique was
used to modify the test result so that the result can reveal the
safety benefits of AVs in real world. The most important
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advantage of accelerated evaluation is that it can describe
the real-world benefits (such as crash rate) of AVs. And the
method also improves the efficiency of testing. But in
existing studies, the error in critical variable distribution
fitting is ignored, which leads to the final result deviating
from actual. This phenomenon will be discussed in detail in
Section 4.4.3.
In summary, the test matrix method and WCSE method

can hardly reveal the probability of AVs being exposed to
risk in real-world scenarios, and the Monte Carlo simulation
is inefficient. The accelerated evaluation method can reveal
the safety benefits of AVs in real world and has the advantage
of high testing efficiency. However, existing studies
overlooked the fitting errors of critical variables, resulting in
the deviation of test result from the field operation. To solve
this problem, this paper proposes an accelerated testing
method for AVs safety evaluation based on improved IS
techniques. Considering the fitting error of critical variables,
the GA is used to calculate the optimal IS parameters to
obtain a better acceleration efficiency. And the error
correction parameter is used to correct the test result to
make the result consistent with the result calculated by
empirical data.

3. Methodology

In real-world data, high-risk events of vehicles belong to rare
events, and a reliable evaluation of the probability of this
event requires a large number of tests. The proposed
accelerated testing method based on improved IS
techniques can reduce the number of tests and obtain a
reliable test result. The proposed method can be divided
into four steps (Figure 1). First, based on the real-world
data, the scenarios to be analyzed are extracted, and the
critical variables of these scenarios are defined and obtained.
Second, based on the extracted scenarios and variables, the
optimal IS parameters are calculated to generate accelerated
scenarios, and the IS technique and simulation are used to
calculate the safety benefits of AVs. Third, the error
correction parameter is calibrated by the real-world data and
safety benefits. Finally, the test result is corrected by the
error correction parameter, and the final safety benefits of
AVs in real world are obtained. We will discuss this
framework in the following sections in detail.

3.1 Probability of high-risk-event
Consider a sample space X with a probability measure P. Let
P(«) denote the probability of a high-risk event. Let x be a

random sample in X. Let I«(x) be the indicator function of
high-risk event « . I«(x) is defined as:

I« xð Þ ¼ 1; if x � «

0; otherwise

(
(1)

Let g denote the probability P(«). g can be estimated via
simulation by generating independent samples (x1, x2,. . ., xn).
Let ĝ n denote an estimator of g . ĝ n can be calculated by:

ĝ n ¼
1
n

Xn

i¼1

I« xið Þ (2)

According to the law of large numbers, ĝ n ! g as n!1, that
is, when n is large enough, ĝ n converges to g .
To ensure the reliability of ĝ n, the central limit theorem

proves useful in developing a confidence interval (CI) for
estimate and is used to determine the necessary n for
accurate estimation. For a sufficiently large n, the variance
of ĝ n is:

s2 ĝ nð Þ ¼ Var
1
n

Xn

i¼1

I« xið Þ
0
@

1
A

¼ 1
n2

Xn

i¼1

Var I« xið Þ� �

¼ g 1� gð Þ
n

(3)

With a confidence level at 100(1 – a) per cent, the CI of ĝ n is:

ĝ n � za=2s ĝ nð Þ; ĝ n 1 za=2s ĝ nð Þ� �
(4)

where, za/2 is defined as:

za=2 ¼ U�1 1� a=2ð Þ (5)

where, U�1 is the inverse cumulative distribution function of
normal distributionN(0,1).
The half-width of CI is:

la=2 ¼ za=2s ĝ nð Þ (6)

As the value of ĝ n is small, the relative half-width lr is
used to indicate the accuracy of the estimation. lr is
defined as:

Figure 1 Framework of proposed accelerated testing method
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lr ¼ la=2=g (7)

To ensure that lr is smaller than a constant bwe need:

lr ¼
la=2
g

¼ za=2s ĝ nð Þ
g

¼ za=2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� g

gn

s
� b (8)

That is:

n � 1� g

g
�
z2a=2
b2

(9)

The probability of high-risk events in real-world driving is
very small. Therefore, the sample size n needs to be huge to
ensure the reliability of the estimation. This means that a
huge number of tests are required to evaluate the probability
of high-risk events in AV driving if using the Crude Monte
Carlo method.

3.2 Importance sampling
IS is one of the classical variance reduction techniques for
increasing the efficiency ofMonte Carlo algorithms (Glynn and
Iglehart, 1989). The IS has been successfully used to evaluate
reliability (Heidelberger, 1995) and critical events in finance
(Glasserman andLi, 2005), insurance (Asmussen andAlbrecher,
2010) and telecommunication networks (Chang et al., 1994).
General overviews about IS can be found in Bucklew (2013) and
Blanchet and Lam (2012). The basic idea of IS used in
evaluation of AVs is to replace the original distribution density
function f(x) by a new one f �(x) to generate event x, which leads
to a higher probability of occurrence of high-risk events. And
then the risk calculation function is modified to obtain the safety
benefits of AVs.
Let x� be the event generated by f �(x), the estimator ĝ n can

be expressed as:

ĝ n ¼
1
n

Xn

i¼1

I« x�i
� �

L x�i
� �

(10)

where,L x�ið Þ is the likelihood ratio (Radon–Nikodym derivative
(Royden and Fitzpatrick, 1988)) defined as:

L x�i
� � ¼ f x�ið Þ

f � x�ið Þ (11)

The relative half-width of CI constructed by IS can be
expressed as:

l�r ¼ la=2
g

¼ za=2s ĝ nð Þ
g

¼
za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ef � ĝ n

2ð Þ � E2
f � ĝ nð Þ

q
g
ffiffiffi
n

p

¼ za=2ffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ef � I2« x�ð ÞL2 x�ð Þ� �

g2 � 1

s
(12)

To ensure l�r � b, the necessary test number n is:

n � Ef � I2« x�ð ÞL2 x�ð Þ� �
g2 � 1

 !
�
z2a=2
b2

(13)

Therefore, to obtain a reliable result through a small number of
tests, the density function f �(x) needs to be properly chosen to
makeEf � I2« x�ð ÞL2 x�ð Þ� �

close to g2.

3.3 High-risk scenarios: cut-in events
The proposed method can be used in a variety of scenarios such
as lane changing scenarios, car-following scenarios and crossing
scenarios. In the typical traffic environment, the cut-in scenario
occurs more frequently and has greater risk on human driving.
Therefore, this study focuses on the cut-in scenario which
refers to the situation that other vehicles move into the lane
where AV located from an adjacent lane in front of the AV.
The critical variables of cut-in scenario are identified as: the

velocity of lane changing vehicle (LCV) vl, the range R defined
as the distance between the rear edge of the LCV and the front
edge of AV, andTTC. TheTTC is defined as:

TTC ¼ �R
_R

(14)

where,R is the range, _R is the derivative ofR.
During the driving process, the high-risk events tend to

correspond to small R and TTC. Smaller R and TTC indicate
that the event is rarer and less safe. Therefore, the reciprocal of
R and TTC are used to put the rare events in the tail of the
distribution. The Pareto distribution is used to fit R�1 and the
Exponential distribution is used to fit TTC�1. The distribution
of vl is not fitted and the empirical distribution is directly used
to generate events.
The density function of the distribution of R�1 can be

expressed as:

fR�1 xjkR�1 ;sR�1 ; u R�1ð Þ ¼ 1
sR�1

11 kR�1
x� u R�1

sR�1

� ��1� 1
k
R�1

(15)

where, kR�1 is the shape parameter; sR�1 is the scale parameter;
u R�1 is the threshold parameter.
The density function of the distribution of TTC�1 can be

expressed as:

fTTC�1 xjl TTC�1ð Þ ¼ 1
l TTC�1

e�x=l TTC�1 (16)

where, l TTC�1 is the rate parameter.
Therefore, every lane changing event can be expressed as:

xi ¼ vl ;R�1;TTC�1
� �

(17)

3.4 Accelerated Evaluation
According to IS technique, a new distribution f �R�1 is used to
replace fR�1 , and a new distribution f �TTC�1 is used to replace
fTTC�1 . As R�1 obeys Pareto distribution, we need to
construct a new exponential distribution ~f R�1 before
replacing fR�1 by f �R�1 to reduce the computation complexity
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in later steps (Zhao et al., 2017b). ~f R�1 has the smallest least
square error to fR�1 . ~f R�1 is defined as:

~f R�1 xð Þ ¼ 1
l R�1

exp � x
l R�1

� �
(18)

Apply exponential change of measure to ~f R�1 and fTTC�1 , we get
f �R�1 and f �TTC�1 :

f �R�1 xj#R�1ð Þ ¼ 1
l R�1 � #R�1

� �
exp � x

l R�1 � #R�1

� �
(19)

f �TTC�1 xj#TTC�1ð Þ ¼ 1
l TTC�1 � #TTC�1

� �
exp � x

l TTC�1 � #TTC�1

� �
(20)

Therefore, the likelihood is:

L R�1 ¼ x;TTC�1 ¼ y
� �

¼ fR�1 xð ÞfTTC�1 yð Þ
f �R�1 xð Þf �TTC�1 yð Þ (21)

The probability of high-risk events is:

P «ð Þ ¼ Ef I« xð Þð Þ ¼ Ef � I« xð ÞL xð Þð Þ (22)

Therefore, proper f �R�1 and f �TTC�1 need to be constructed to
calculate P(«) efficiently. In other words, optimal IS parameters
#R�1 and #TTC�1 need to be obtained to get the reliable test result
through theminimumnumber of tests.

3.5 Searching for optimal importance sampling
parameters with genetic algorithm
The efficiency of accelerated evaluation is closely related to the
IS parameters. To obtain the optimal IS parameters, consider
the following optimization problem:

min n ¼ Ef � I2« x�ð ÞL2 x�ð Þ� �
g2 � 1

 !
�
z2a=2
b2

(23)

s:t g ¼ Ef I« xð Þð Þ (24)

x ¼ vl ;R�1;TTC�1
� �

(25)

fR�1 xð Þ ¼ 1
sR�1

11 kR�1
x� u R�1

sR�1

� ��1� 1
k
R�1

(26)

fTTC�1 xð Þ ¼ 1
l TTC�1

e�x=l TTC�1 (27)

x� ¼ vl ;R�1�;TTC�1�� �
(28)

f �R�1 xð Þ ¼ 1
l R�1 � #R�1

� �
exp � x

l R�1 � #R�1

� �
(29)

f �TTC�1 xð Þ ¼ 1
l TTC�1 � #TTC�1

� �
exp � x

l TTC�1 � #TTC�1

� �
(30)

L R�1 ¼ m ;TTC�1 ¼ w
� �

¼ fR�1 mð ÞfTTC�1 wð Þ
f �R�1 mð Þf �TTC�1 wð Þ (31)

In this optimization problem, the objective function is number
of tests n, and the decision variables are IS parameters #R�1 and
#TTC�1 . In the constrains, I« is the indicator function of high-
risk event « ; L(x�) is the likelihood; g is the probability of high-
risk events; za/2 is given by equation (5); b is the threshold of
relative half-width; x is a matrix of a series of samples x1, x2,. . .,
xi, and xi is given by equation (17); fR�1 xð Þ is the density
function of distribution of R�1; fTTC�1 xð Þ is the density function
of distribution of TTC�1; x� is a matrix of a series of samples
x�1; x

�
2; . . . ; x

�
i and x�i ¼ vl ;R�1�;TTC�1�� �

; f �R�1 xð Þ is the density
function of distribution of R�1�; f �TTC�1 xð Þ is the density function
of distribution of TTC�1s�.
GA is one of the effective methods to solve the optimization

problem (Goldberg, 1989;Michalewicz, 2013). GA is an adaptive
global search algorithm, which has the advantages of short
calculation time and high robustness. GA is widely used in multi-
objective optimization, industrial engineering, management
science, artificial intelligence and so on (Gen and Cheng, 2000).
The optimization problem can be solved by GA to calculate the
optimal IS parameter. With the assistant of GA tool inMATLAB,
the optimization problem can be easily solved.

3.6 Error correction
The error in distribution fitting of R�1 and TTC�1 is inevitable
during the accelerated testing. Through the comparison with
the empirical data, it is obvious that these fitting errors will lead
to the final result ĝ deviating from the actual probability of
risk g . However, the existing studies only compare the
accelerated testing result with Monte Carlo simulation result.
The data used in these two methods strictly follow the well-
fitted distributions, and the error is overlooked. Fortunately,
this study found this issue by comparing the result with the
actual data and corrected the error. The error is corrected by
error correction parameter t , let:

g ¼ ĝ � t (32)

where, g is the probability of risk calculated by empirical data;
ĝ is the estimator obtained by accelerated evaluation. The
fitting error can be reflected by the difference between mean of
the fitted distributions and empirical distributions. Therefore,
t is defined as:

t ¼ k1 mR1 � mR0ð Þ1 k2 mTTC1 � mTTC0ð Þ (33)

where, mR1 is the mean of fitted R�1 distribution; mR0 is the
mean of empirical R�1 distribution; mTTC1 is the mean of fitted
TTC�1 distribution; mTTC0 is the mean of empirical TTC�1

distribution; k1 and k2 parameters need to be calibrated.
The significance of error correction parameter is to modify

the test result to make it closer to empirical result rather than
the result of Monte Carlo simulation. The revised result can
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better reveal the safety benefits of AVs in real world, and it is
more persuasive.

3.7 Algorithm of the proposedmethod
The execution algorithm of the proposedmethod is as follows:

Execution Algorithm of the ProposedMethod
Step 1Critical Variables Extraction
Step 1.1: Input the real-world dataX. Extract scenarioW to
be analyzed. Take cut-in scenario as example.
Step 1.2: Input the scenariosW. Define the critical variables
j 1, j 2,. . .,j i. Extract j 1,j 2,. . .,j i. fromW. The critical
variables of cut-in scenario are vl,R andTTC.

Step 2AcceleratedDistributionGenerating
Step 2.1: Input the critical variablesR andTTC. Fit the
distribution ofR�1 based on equation (15). Fit the
distribution ofTTC�1 based on equation (16).
Step 2.2: Input the distribution ofR�1. Generate f̂ R�1 based
on equation (18).
Step 2.3: Input the distribution f̂ R�1 and fTTC�1 . Generate the
optimal IS parameters #R�1 and #TTC�1 based on equations
(23)-(31).
Step 2.4: Input the parameters #R�1 and #TTC�1 . Generate
accelerated distribution f �R�1 and f �TTC�1 based on equations
(19)-(20).

Step 3Error Correction Parameter Calibration
Input the real-world dataX1.WhereX1 is a subset ofX.
Input the accelerated distribution f �R�1 and f �TTC�1 . Generate
parameter k1 and k2 based on equations (32) and (33).

Step 4Test of AVs
Step 4.1: Input the accelerated distribution f �R�1 and f �TTC�1 ,
and the empirical distribution of vl. Generate the accelerated
scenarios xi based on equation (17).
Step 4.2: Input accelerated scenarios xi, and the parameter k1
and k2. Calculate the test result based on equations (21) (22)
(32) (33).

4. Simulation

4.1 Data
The data used in this research are from Shanghai Naturalistic
Driving Research project. The project is the first naturalistic
driving data collection project using real vehicles and high-
precision equipment in China. The project aims to collect real-
world traffic data and study the behavioral characteristics of
Chinese drivers. It recorded over 500,000 km naturalistic
driving data from December 2012 to December 2015. The
driving trajectories of vehicles basically covered the main roads
in Shanghai (Figure 2). The vehicles are equipped with
Mobileye vehicle active safety system and SHARP2 NextGen
data acquisition system. The data collected include
information such as vehicle position, velocity and distance to
surrounding vehicles (Figure 3).
The simulation takes the cut-in scenario as an example to

validate the proposed method. Therefore, the cut-in scenarios
are extracted from the naturalistic driving data. The cut-in
scenario refers to the situation that other vehicles move into the
lane where AV located from an adjacent lane in front of the AV.
The moment when the LCV crosses the lane line is defined as
lane changing moment. Then, the variables of cut-in scenario

of lane changing moment are extracted. The variables include
vl, v and R (Figure 4). Where vl is the velocity of LCV, v is the
velocity of evaluated vehicle and R is the range defined as the
distance between the rear edge of the LCV and the front edge of
evaluated vehicle. In Figure 4, the evaluated vehicle is AV, and
the LCV can be AV ormanual-driving vehicle.
For comparison analysis, the same criteria as Zhao et al.

(2017b) were applied: v [ (2m/s, 40m/s); vc [ (2m/s, 40m/s); and
R [ (0.1m, 75m). Finally, 32,104 cut-in scenarios were extracted
from the data.

4.2 Evaluatedmodels
For comparison analysis, the same AV model and parameters
as that of Zhao et al. (2014b) were used in the simulation. The
AV is equipped with adaptive cruise control (ACC) and AEB

Figure 2 The trajectories of naturalistic driving vehicles

Figure 3 Data collected by data acquisition system

Figure 4 Extracted variables of cut-in scenario
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system. When TTC � TTCAEB, the AV is controlled by ACC;
and when TTC < TTCAEB, the AV is controlled by AEB.
TTCAEB is a function of vehicle velocity (Figure 5).
The ACC is approximated by a discrete proportional-

integral controller to achieve a desired time headway TACC
HWd

(Ulsoy et al., 2012). The input of the controller is time headway
error tErrHW , and the output is the command acceleration of the
next time step which can be expressed as:

ad k1 1ð Þ ¼ ad kð Þ1KACC
p tErrHW kð Þ � tErrHW k� 1ð Þ� �

1KACC
i tErrHW kð Þ � tErrHW k� 1ð Þ� �

Ts=2 (34)

tErrHW ¼ tHW � TACC
HWd

(35)

tHW ¼ R=v (36)

jad j � amax
ACC (37)

where, ad is the command acceleration; tErrHW is the time
headway error; KACC

p and KACC
i are constant gains; Ts is the

sampling time; TACC
HWd

is the desired time headway; tHW is the
time headway;R is the range; v is the velocity of AV; and amax

ACC is
themaximum acceleration.
Once triggered, AEB aims to achieve an acceleration aAEB.

Let the triggered moment be 0, the AEB model can be
expressed as:

a tð Þ ¼
0; if t � Ta

rAEB � t � Tað Þ; if t > Ta and a tð Þ � aAEB
aAEB; else

8>><
>>: (38)

where, a(t) is the acceleration of vehicle at t moment; rAEB is the
derivative of acceleration; Ta is the action time; and aAEB is the
acceleration of emergency braking.
A time tAV is needed to model the transfer function from the

commanded acceleration to the actual acceleration. For
simplicity, let tAV be a constant.
TheparametersofAVmodel in simulationare listed inTable I.

4.3 Analyzed event
There are three kinds of high-risk events: conflict, crash and
injury. Crash and injury events are included in conflict events.

Besides, the simulation analysis methods and conclusions of
three kinds of events are both similar. Therefore, for simplicity,
simulation analysis in this paper focuses on the conflict events.
A conflict event happens when an AV enters the proximity

zone of the LCV during time t to t 1 T. The proximity zone is
defined as the area in the adjacent lane from 1.2 m in front of
the bumper of LCV to 9 m behind the rear bumper of LCV
(Lee et al., 2004). The definition of proximity zone is shown in
Figure 6.

4.4 Simulation result
Simulation can be used to evaluate the real-world safety benefits
of AVs if the models are strictly calibrated by real-world data. In
this paper, the distributions of critical variables are fitted based
on empirical data. The IS parameter is calculated based on a
subset of empirical data. The error correction parameter is
calibrated by a subset of empirical data. The AEB system was
extracted from a 2011 Volvo V60, based on a test conducted by
ADAC (Allgemeiner Deutscher Automobil-Club e.V.)
(Gorman, 2013). Therefore, the results of simulation can reveal
the real-world safety benefits of testedAV.

4.4.1 Distribution of critical variables
As is mentioned in Section 3.3, the critical variables of cut-in
scenario are the velocity of LCV vl, the range R and time to
collision TTC. The distribution of vl is not fitted and the
empirical distribution is shown in Figure 7.
The Pareto distribution is used to fit the distribution of R�1.

The fitting result is shown in Figure 8 andTable II.
The exponential distribution is used to fit the distribution of

TTC�1. Fitting result is shown in Figure 9. The estimate of
parameter is l TTC�1 ¼ 0:0647 Std:Err: ¼ 0:0004ð Þ.
4.4.2 Result of accelerated evaluation
The optimal IS parameters #R�1 and #TTC�1 are calculated by
solving the optimization problem in equations (22)-(30).
The GA tool of MATLAB is used to solve this problem. The

Figure 5 TTCAEB as a function of vehicle velocity

Table I Parameters in evaluated models

Parameter Value Unit Equation

KACC
p

�38.6 – (34)

KACC
i

�1.35 – (34)

TACC
HWd

2 s (35)
Ts 0.1 s (34)
amax
ACC 5 m/s2 (37)

aAEB �10 m/s2 (38)
rAEB �16 m/s2 (38)
Ta 0.5 s (38)
sAV 0.0796 s –

Figure 6 Definition of proximity zone
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value of fitness function in solution searching process is
shown in Figure 10. The result is #R�1 ¼ �0:3419, and
#TTC�1 ¼ �0:0120. Traversing calculation may determine
the approximate region of the optimal solution. Therefore,
to verify the validity of the GA optimal solution, different
combinations of #R�1 and #TTC�1 values are traversed
[Figure 11]. The result shows that the GA optimal solution
is reliable.
Then, the conflict rate is calculated using the optimal #R�1

and #TTC�1 . The convergence is reached when the relative half-
width lr< 0.2 with 80 per cent confidence. And the test number
is calculated when the conflict rate reaches convergence.
As the simulation is stochastic, the required test number

may fluctuate within a certain range. To ensure the credibility
of the result, certain times of simulations are required.
Therefore, the simulation was done ten times using the
optimal #R�1 and #TTC�1 . The average test number of ten
simulations was compared with the result of non-accelerated
simulation based on empirical data. The result shows that the

average required test number of proposed method is 286.
And the required test number of non-accelerated simulation
is 10,391. The result of one of the ten simulations is shown in
Figures 12 and 13.

Table II Parameters in distribution of R�1

Parameter kR�1 sR�1 u R�1

Estimate 0.1987 0.0180 0.0133
Std. Err. 0.0066 0.0002 0

Figure 8 Fitting result of R�1 using Pareto distribution

Figure 7 The empirical distribution of vl Figure 9 Fitting result of TTC�1 using exponential distribution

Figure 10 Fitness value in solution searching process

Figure 11 Result of traversing calculation
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Based on the same data, the method proposed in Zhao et al.
(2017b) was also used in simulation. The simulation was done
ten times too, and the average test number was compared with
the result obtained by the proposed method. The result shows
that the average test number of method in Zhao et al. (2017b) is
435. Therefore, the proposed method is more efficient.
Compared with the method in Zhao et al. (2017b), the
proposedmethod improves the test efficiency by 35 per cent.

4.5 Error correction
The error in distribution fitting of R�1 and TTC�1 is
inevitable. However, the data used in Monte Carlo
simulation and existing accelerated evaluation method
strictly follow the well-fitted distributions, and the error is
overlooked, which leads to the final conflict rate deviating
from the actual. Therefore, the error correction is necessary.
As shown in Figure 14, the conflict rate calculated by the
proposed method converges to the similar value of actual
conflict rate. However, the conflict rate calculated by Monte
Carlo method and the method in Zhao et al. (2017b)
converges to another value. By error correction, the accuracy
of accelerated test result was increased by 23 per cent.

As mentioned in Section 3, the main advantage of
accelerated evaluation is that the method can reveal the
safety benefits of real world. However, if the error is not
corrected, the accelerated testing cannot accurately reveal
the conflict rate in real world and cannot provide the correct
reference to the safety of AVs. Therefore, error correction is
of great importance to accelerated testing, which is an
indispensable step.

5. Conclusion

The rapid development of automated driving technology
constantly puts forward new requirements for the testing
technique of AVs. This paper proposes an accelerated testing
method for AVs safety evaluation based on improved IS
techniques. Based on the real-world data, the critical variables
of research scenarios are extracted, and the distributions of
these variables are fitted. Then the optimal IS parameters are
calculated by solving an optimization problem with GAs to
generate accelerated scenarios, and the AVs are tested in these
scenarios to obtain the safety benefits. Finally, the testing result
is modified by the error correction parameter which is calibrated
by the real-world data and safety benefits, and the final result of
accelerated testing is obtained. Focusing on the cut-in scenario,
the proposed method is validated by simulation based on the
Shanghai naturalistic driving data. The result shows that
compared with the existing IS technique, the proposed method
improves the test efficiency by 35 per cent and increases the
accuracy of accelerated test result by 23 per cent.
Compared with the existing IS technique, the proposed

improved importance technique method has the following
contributions: First, GA is used to calculate the optimal IS
parameters by solving an optimization problem, which
improves efficiency of test. Second, based on the empirical
data, the result of test is modified by the error correction
parameter, which solves the problem in existing studies that the
conflict rate in accelerated testing result is inconsistent with the
conflict rate calculated by the empirical data. Third, based on
the naturalistic driving data in Shanghai, typical high-risk

Figure 12 Estimation of the conflict rate

Figure 13 Relative half-width of conflict rate

Figure 14 Conflict rate calculated by different methods
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cut-in scenarios in China are analyzed, and the proposed
method is validated by simulation.
As a new method for AVs testing, the accelerated testing

method has broad application prospects. Further research
needs to focus on the following two aspects. One is the
definition and testing method of the more complex high-risk
behaviors, especially the multi-object interactive behavior in
mixed traffic flow. The other aspect is the further integration
of testing tools and accelerated testing methods.
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