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Abstract

Purpose — The purpose of this study is to estimate the linear regression parameters using two alternative
techniques. First technique is to apply the generalized linear model (GLM) and the second technique is the
Markov Chain Monte Carlo (MCMC) method.

Design/methodology/approach — In this paper, the authors adopted the incurred claims of Egyptian
non-life insurance market as a dependent variable during a 10-year period. MCMC uses Gibbs sampling to
generate a sample from a posterior distribution of a linear regression to estimate the parameters of interest.
However, the authors used the R package to estimate the parameters of the linear regression using the above
techniques.

Findings — These procedures will guide the decision-maker for estimating the reserve and set proper
investment strategy.

Originality/value — In this paper, the authors will estimate the parameters of a linear regression model
using MCMC method via R package. Furthermore, MCMC uses Gibbs sampling to generate a sample from a
posterior distribution of a linear regression to estimate parameters to predict future claims. In the same line,
these procedures will guide the decision-maker for estimating the reserve and set proper investment strategy.
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1. Introduction

Modeling of random events is one of the most vital research aspects in insurance and
actuarial sciences. In insurance particularly, modeling and predicting the amount of claims
has an extremely importance to both insurers and academics. In addition, Bayesian
approach is one of the best statistical methods that estimate outstanding claims. In Bayesian
modeling we should distinguish between the observable quantities and the unknown
parameters that can be treated as random variables. Moreover, Bayesian approach provides
a technique that combine prior information from the given data to estimate posterior
distribution. In the same vein, posterior distribution can be used to describe the model
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parameters via mean, median, percentiles, point estimate and credible intervals. Markov  Evidence from
Chain Monte Carlo (MCMC) simulation may follow Bayesian statistics to estimate non-life
parameters that is impossible to be estimated by maximum likelihood estimate (MLE) or E tian
other statistical methods. MCMC is a technique that is used for sampling probability mass . 8YP
functions or density functions. Furthermore, MCMC does not require optimization algorithm 1SUrance sector
such as MLE and generalized methods of moments, but it provides small sample inference of
parameters. MCMC has been improved to fit nonlinear regression models; this approach fills A7
the gap in literature of non-life insurance market. In addition, MCMC uses Gibbs sampling to
generate a sample from a posterior distribution of a linear regression to estimate the linear
regression parameters. In the same line, generalized linear models (GLMs) can be used for
non-identical residuals and nonlinear functions and it uses a transformation to increase
straighten of the regression, GLMs is considers as an extension to ordinary least square
method when the variances are not equal (i.e. heteroscedastic models). The aim of this paper
is to estimate the linear regression parameters using MCMC and GLM methods for incurred
claims of the non-life Egyptian insurance market. Data adopted in this research consist of
ten year incurred claims from 2007/2008 to 2016/2017 of 22 non-life Egyptian insurance
companies.
Table I and Figure 1 describe the amount of incurred claims during the period from 2007/
2008 to 2016/2017 for non-life Egyptian insurance market, we can notice that there is an
increase in claims but there is a drop in the period between 2010/2011 to 2013/2014 The due
to the Egyptian revolution.
The remainder of this paper will be as follows: Section 2 presents the literature review;
Section 3 gives the methodology; Section 4 presents the models; Section 5 gives the empirical
study; Section 6 concludes the paper.
Year Incurred claims
2007/2008 2,40,9495
2008/2009 2,08,0829
2009/2010 2,72,8816
2010/2011 2,65,2673
2011/2012 2,21,7705
132014 2552 Table .
2014/2015 o7aror;  Amountofincurred
2015/2016 2.56,1639 claims for non-life
2016/2017 3312480  Eeyptian insurance
market in thousands
Source: Financial Regulatory Authority (FRA) EGP
Incurred Claims
4,000,000
3,000,000 ~ Figure 1.
2,000,000 M - Amount of Incurred
1.000.000 |—Cla|ms claims for non-life
T Egyptian insurance
0 ‘ ‘ ! ‘ ‘ ‘ ‘ market
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2. Literature review

Alba (2008) used Munich Chain Ladder (MCL) to optimize paid and incurred claims via
MCMC method using WinBUGS software. This paper suggested many modifications to the
MCL method. Moreover, he presented a Bayesian approach to the MCL.

Jackie (2007) compared many stochastic reserving methods such as MCMC and GLMs by
considering the structure of the model, the assumption and estimation. This paper applied
these methods on claims to estimate the outstanding claims and risk margin for each
individual accident and aggregate risk margin.

Pang et al. (2007) emphasized on modeling loss distributions for insurance claims, by
considering Pareto distribution to calculate the probability of extreme claims. They used
Bayesian and MCMC techniques to estimate Pareto parameters.

Scollnik (2001, 2004) reviewed several actuarial models that consider Bayesian method.
Afterwards, he implemented the MCMC simulations for Bayesian estimation BUGS
(Bayesian inference Using Gibbs Sampling) of reserves via several programming languages
(e.g. WinBUGS).

Peremans et al (2017) focused on claim reserving using GLMs on chain ladder based on
past claims, also used an alternative technique to obtain inference by using bootstrapping.
In addition, he estimated a distribution of risk measures using several bootstrap procedures.

Boj and Costa (2017) estimated the parameters of loss distribution and predicted the error
using GLMs to the claim amounts of a chain ladder method. Furthermore, they used a
parametric family to estimate error distribution. In addition, they assumed a Poisson
distribution with logarithmic link function as a deterministic chain ladder method.

Verdonck et al. (2009) illustrated how to forecast claim reserves using two methods.
Firstly, robust chain ladder method that observes outliers. Secondly, robust GLMs that
estimate the claim reserve as if the data has no outliers. They concluded that the robust
chain ladder method is showing a better performance than robust GLMs.

Carrato and Visintin (2019) introduced a new approach which is machine learning
techniques in actuarial sciences that has more accuracy in prediction than traditional
techniques. They focused on the elements of machine learning rather than traditional
forecasting techniques to predict property and casualty loss reserving.

Ravenzwaaij et al. (2018) introduced the MCMC methods as a technique that estimate the
posterior distributions and provides the benefits and limitation of sampling using MCMC.

Luoma et al. (2008) applied the Bayesian approach and regression method to evaluate the
American-Style option, also used MCMC method to estimate the model and parameter
errors. Moreover, they concluded that the proper choice of the model is a vital issue in risk
management.

Hogg and Foreman (2018) used MCMC to estimate the density function of the posterior
distribution, fitting models to data and probabilistic inferences. In this paper, they
illustrated the MCMC method and parameter estimation, they concluded that this method
provides the best estimate.

Zhang (2017) used Apache Spark across a cluster of computers to estimate distribution
using Bayesian approach. In addition, he used Bayesian hierarchical Tweedie model to big
data of insurance claims as a predictive model.

Yu (2015) adopted a statistical model for health insurance claims, to predict future claims.
In this paper, he used generalized exponential growth model (GEGM) and estimated the
parameters of the model based on MCMC.

Lim (2011) applied the MCMC method to solve Bayesian method, estimate parameters
and prediction of reserves. He also concluded that MCMC method is much better than
classical methods (e.g. chain ladder and Bayesian over-dispersed Poisson model).



3. Data and methodology Evidence from
Data adopted in this research consists of a 10-year time series of incurred claims for 22 non- non-life

life Egyptian insurance market, these data reported in FRA since 2007/2008 to 2016/2017. In Egyptian
this paper, we will estimate the parameters of a linear regression model using MCMC .

method via R package. Furthermore, MCMC uses Gibbs sampling to generate a sample from msurance sector
a posterior distribution of a linear regression to estimate parameters to predict future claims.
In the same line, these procedures will guide the decision-maker for estimating the reserve 49
and set proper investment strategy.

4. Models
4.1 Linear regression
Consider the linear regression model:

y= bo+bix+e

where y is the dependent variable, x the independent variable, by and b, are the parameters
of themodel and & is the white noise & ~ N0, o).

4.2 Generalized linear model
The GLM is formed with two ingredients: link function and variance function. The link
function relates the means of the observations to the predictors (linearization), while the
variance function relates the means to variances Lindsey (1997).

The link function can be expressed by:

8(mi) = {i
and the variance function is defined by:
var(Yi) = & V(n)
where the dispersion parameter ¢f is a constant.
4.3 Bayesian statistics
Bayesian analysis emphasis in estimation of posterior distribution depending on prior
distribution and the likelihood function of the parameters. In addition, normalize the final

posterior distribution:

P(6) x P(x]0)

P(Ox) = P

P(6]x) < P(0) x P(x|0)

Posterior o Prior x Likelihood
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4.4 Markov chain

According to Andrieu et al. (2003) let X, be the value of a certain random variable at
time ¢ and possible values of X represents the state space. A stochastic process is
considered as a Markov stochastic process if the state space depends only on the
current state:

P[X;_H = S]’|Xo = Spy.--y Xt = Si] = P[X;_H = S]'| Xt = Si}

That means to predict future value of the process we need only the current state, the
probability of such event is called transition probability P, 7) = PG — j):

P(i,j) = P(i —j) = P[X;1=sj| X; =s]

4.5 Monet Carlo
According to Andrieu et al (2003), assume that /4(x) is a complex function and we need to
find the integration of /(x):

b

/Mmm

a

and /(x) can be expressed as a function f (x) multiplied by a probability p(x) then:
b b
[yie= [ 1) -pwas = By 7]

this function is the expected value of f(x) over a density function p(x). If we draw a large
number of observations x;, 1 =1, 2, ., n of a random variable with density function p(x)
then:

b

/m@mz:@myuﬂg IS

a

4.6 Markov chain Monte Carlo
According to Bayesian statistics, MCMC method is an iterative sampling technique that
allows sampling through P(6 | x). MCMC is an effective approach that generates samples
from posterior distributions P(6 | x). Moreover, the target density is the posterior density
w(0) = P(0]x) and MCMC can be implemented when posterior cannot be formed
properly:

Suppose we seek an expectation . = E [g(8)] = [g(8) x P(6]x)d6.

As illustrated by Monte Carlo method above.



5. Empirical results
5.1 Descriptive statistics
In this section, we will illustrate the statistical characteristics of amount of incurred claims
as shown in Table II.

From Table Il and Figure 2 we can notice that the data is positively skewed, also the data
is Platykurtic under the normal curve.

5.2 Generalized linear model

Table III presents the results of GLM applied for incurred claims to estimate the linear
regression parameters by and b;. Moreover, Akaike Information Criterion (AIC) found to be
285.36 that represents the model selection that estimates the quality of the model. In
addition, Figure 3 visualizes the residuals of the model and shows the Skewness of the data.

5.3 Markov chain Monte Carlo
In this section, we implement the MCMC method in R package to estimate the parameters of
the linear regression; we performed 1000 iterations on MCMC that means we applied the

Measure Incurred claims
Mean 2,53,9812
Standard Deviation 3,54,429.1
Minimum 2,08,0829
First Quartile 2,26,5652
Median 2,51,6319
Third Quartile 2,70,9780
Maximum 3,31,2489
Range 1,23,1660
Skewness 0.7
Kurtosis —0.3
Standard Error 112080.3

Source: Authors’ calculations

Evidence from
non-life
Egyptian
Insurance sector

51

Table II.
Descriptive analysis
of incurred claims

3,000,000

2,600,000
L

2,200,000

Figure 2.
Box-plot of incurred
claims
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Markov chain 1000 times. Table IV summarizes the results from the R package of the mean,

21 standard deviation and the standard error of the parameters by, b; and o Moreover,
’ Figures 4, 6 and 8 present the trace (time series plot) of the parameters, while Figures 5, 7
and 9 presents the density of the parameters.
52 Parameter Value Standard error t-value p-value
bo —1,25,83,2191 6,97,93,362 —1.803 0.109
b; 6,3819 3,4697 1.839 0.103
Degrees of freedom 9
AIC 285.36
Table III.
GLM Results Source: Authors’ Calculations
Residuals vs Fitted
100
¢ "
. &7 o - B P J
N o A
Figure 3. A "
GLM residuals T T T T T T
2,300,000 2,400,000 2,500,000 2,600,000 2,700,000 2,800,000
Parameter Mean SD Standard error
bo —1.240e + 08 7511e+07 2.096e + 06
by 6.292e + 04 3.734e + 04 1.042e 403
o 1269 + 11 8.748e + 10 3.622e + 09
TableIV.
MCMC Results Source: Authors’ Calculations
Figure 4. g B T T T T T
" 1,000 1,200 1,400 1,600 1,800 2,000

Trace of by

lterations



Oe+00 2e-09 4e-09

Oe+00 2e+05

Oe+00 4e-06 8e-06 -2e+05

4e+11 Be+11

Oe+00

4e-12 Be-12

Oe+00

Evidence from
non-life
Egyptian
Insurance sector

53
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Figure 5.
Density of by

Figure 6.
Trace of by

Figure 7.
Density of by

Figure 8.
Trace of 62

Figure 9.
Density of 62
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6. Conclusion

MCMC simulation may follow Bayesian statistics to estimate parameters. In addition,
MCMC uses Gibbs sampling to generate a sample from a posterior distribution of a linear
regression. MCMC is a technique implemented to estimate the linear regression parameters
bo, by and &2 In this paper, we adopted the incurred claims of non-life Egyptian insurance
industry reported in Financial Regulatory Authority (FRA) during 10-year period, from
2007/2008 to 2016/2017 as an explanatory variable. We applied GLM to estimate the
regression parameters and we performed 1000 iterations (i.e. 1000 Markov Chains) on
MCMC to estimate the linear regression parameters on R package, MCMC performs many
iterations of chains for sampling to estimate regression parameters that yield more
information to reach the true values of the parameters. Moreover, these procedures will
guide the decision maker for estimating the reserve and set proper investment strategy.
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