JES 51,9

112

Received 23 August 2023 Revised 14 October 2023 Accepted 5 November 2023

Fiscal adjustments and TFP dynamics: addressing reverse causality within a heterogeneous panel framework with global shocks

Gianni Carvelli Department of Economic and Social Sciences (DiSES), Catholic University of the Sacred Heart, Piacenza, Italy

Abstract

Purpose – The purpose of this study is to provide new insights into the relationship between fiscal policy and total factor productivity (TFP) while accounting for several economic and econometric issues of the phenomenon like non-stationarity, fiscal feedback effects, persistence in productivity, country heterogeneity and unobserved global shocks and local spillovers affecting heterogeneously the countries in the sample.

Design/methodology/approach – The paper is empirical. It builds an Error Correction Model (ECM) specification within a dynamic heterogeneous framework with common correlated effects and models both reverse causality and feedback effects.

Findings – The results of this study highlight some new findings relative to the existing related literature. The outcomes suggest some relevant evidence at both the academic and policy levels: (1) the causal effects going from fiscal deficit/surplus to TFP are heterogeneous across countries; (2) the effects depend on the time horizon considered; (3) the long-run dynamics of TFP are positively impacted by improvements in fiscal budget, but only if the austerity measures do not exert slowdowns in aggregate growth.

Originality/value – The main originality of this study is methodological, with possible extensions to related phenomena. Relative to the existing literature, the gains of this study rely on the way econometric techniques, recently proposed in the literature, are adapted to the economic relationship of interest. The endogeneity due to the existence of reverse causality is modelled without implying relevant performance losses of the models. Moreover, this is the first article that questions whether the effects of fiscal budget on productivity depend on the impact of the former on aggregate output growth, thus emphasising the importance of the quality of fiscal adjustments.

Keywords Common correlated factors, Cross-country heterogeneity, Dynamic panel analysis, Fiscal policy, Total factor productivity

Paper type Research paper

1. Introduction

The past two decades have been characterised by four major global economic disruptions, i.e. the 2007 global financial crisis, the 2011 European sovereign debt crisis, the 2020 Covid-19 pandemic and the 2022 Russian invasion of Ukraine. These events have stimulated, especially in Europe and the US, the debate on the role of economic policy and the real impacts of fiscal austerity/expansion. Although fiscal responses and their effects have been heterogeneous across time and countries (Afonso and Aubyn, 2010; Calderón *et al.*, 2015; Owusu *et al.*, 2023),

JEL Classification — E62, H62, O47

© Gianni Carvelli. Published by Emerald Publishing Limited. This article is published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this licence may be seen at http:// creativecommons.org/licences/by/4.0/legalcode

Journal of Economic Studies Vol. 51 No. 9, 2024 pp. 112-136 Emerald Publishing Limited 0144-3585 DOI 10.1108/JES-08-2023-0447 the years following the Covid-19 pandemic have been dominated by massive government interventions to stimulate economic activity and mitigate social inequalities associated with the crises (Rogoff, 2021; Baussola and Carvelli, 2023). Interestingly, while the latest decades have been characterised by a steady increase in global public debt (Kose *et al.*, 2022; Rogoff, 2022; Carvelli, 2023), many countries – mainly advanced – have experienced growth rates of productivity much below the growth rates of aggregate output (Fernald *et al.*, 2023) – despite the rapid spread of digital technologies (Ciaffi *et al.*, 2022; Wang, 2023). Therefore, it appears crucial to further investigate whether and how discretionary fiscal policy affects the long-run dynamics of productivity.

While several related studies have been proposed in recent years, the results are often controversial. In addition, most of them focus on the effects of fiscal budget variations on aggregate output rather than productivity. As we can deduce from a stream of articles, any expansionary effect of fiscal policy on aggregate growth does not necessarily imply improvements in capital accumulation, productivity or vice-versa (e.g. Pereira, 2000; Blanchard and Perotti, 2002). The evidence of productivity enhancements associated with fiscal austerity (e.g. Dar and Amirkhalkhali, 2002; Schoonackers and Heylen, 2011; Everaert *et al.*, 2015; Castro, 2017) contrasts with the findings of detrimental effects of government surpluses (Hernández De Cos and Moral-Benito, 2013; Yang *et al.*, 2015; Bardaka *et al.*, 2021). We cannot rule out that the divergence in the results is to a large extent due to the different econometric approaches and time horizons considered. Moreover, the productivity effects of discretionary fiscal policies might depend on the way governments run budget surplus/ deficits – as it likely occurs for aggregate output (see Alesina and Perotti, 1997).

We depart from the existing literature by exploiting recent advances in the macro-panel literature that allow us to simultaneously address the following issues. Firstly, we isolate the causal effects going from fiscal consolidation to total factor productivity (TFP) by modelling reverse causality. Secondly, we build a dynamic heterogeneous empirical framework to account for heterogeneous cross-country effects and unobservable global factors. Thirdly, we allow for unit root processes of both the variables and the unobserved factors, as well as long-run effects and cointegration. Fourthly, our specifications encompass the fiscal feedback effects and the autoregressive behaviour of TFP. Fifthly, we employ the government structural balance as a measure of deficit/surplus in place of the more widely used cyclically adjusted primary balance (CAPB), in order to maximise our sample's dimension – a fundamental aspect for the inference techniques employed in this panel.

Although some of these issues have already been addressed in part of the abovementioned studies, especially as it concerns the existence of unobserved global factors (e.g. Schoonackers and Heylen, 2011; Everaert *et al.*, 2015), to the best of our knowledge this is the first empirical analysis that models reverse causality and feedback effects while addressing non-stationarity, country heterogeneity, global common shocks and cointegration. As we will see throughout the article, the robustness of the estimates and the performance of the models is assessed with additional empirical exercises related to both the economic and inferential spheres of the phenomenon under analysis.

The rest of the paper is organised as follows. Section 2 discusses the relevance of TFP for economic growth in the long-run; Section 3 describes the data and implements panel unit root and cointegration tests; Section 4 outlines the econometric strategy; Section 5 discusses the baseline results; Section 6 conducts a battery of robustness checks; Section 7 concludes the study.

2. TFP as a driver of long-run economic growth

The purpose of this section is to briefly discuss the existing links between TFP and economic growth, in order to underline the relevance of the phenomenon under analysis for the

economies within a long-run perspective. Although, as mentioned before, the trajectories of JES TFP and aggregate growth do not necessarily move in the same direction, the long-run 51.9 dynamics of economic growth are likely to depend to a huge extent on the evolution of TFP. thus motivating the relevance for the macroeconomy of additional analyses on TFP. The existing studies, both theoretical and empirical, highlight the importance of TFP for economic growth, especially when looking at the long-run effects. The main growth models which are constructed on an aggregate production function generally suggest that TFP does determine 114 growth paths and cross-country differences in terms of steady-state level of output. regardless of whether TFP enters the model exogenously (Solow, 1957) or endogenously (e.g. Romer, 1990; Mankiw et al., 1992). Consistently, the seminal work of Caselli (2005) confirms that TFP explains the main cross-country differences in terms of output per capita – mainly because of the different capacities of countries to access the worldwide available technology. Other relevant empirical studies support the findings of strong ties between TFP and economic growth (e.g. Krugman, 1997; Hall and Jones, 1999; Baier et al., 2006), either when considering technical progress or variations in technical efficiency – the two basic components of TFP growth (Danguah et al., 2014). Recent empirical evidence suggests that TFP may affect growth both directly and indirectly, through its effects on inputs (lia et al., 2020). Therefore, the studies on the TFP effects of discretionary fiscal policy could shed light on the transmission channels through which governments may stimulate economic growth and its components.

3. Data and statistical properties

We conduct the panel analysis by employing annual data for 73 countries over the period 1980-2019. Data on TFP and real output per capita are gathered from the PWT database (Feenstra et al., 2015). As it concerns our measure of fiscal adjustment, we use the government structural balance (as a % of potential GDP) of the IMF's World Economic Outlook (Edition of April 2023). Table 1 reports the descriptive statistics for the full sample and the two subsamples represented by the OECD and non-OECD groups. As we will discuss in the course of the article, the bipartition of the sample into OECD and non-OECD follows the existing empirical literature on the determinants of TFP (e.g. Färe et al., 1994; Danguah et al., 2014). It is worth highlighting that,

	Variables	Obs	Mean	Std. Dev	Min	Max
	Full sample					
	TFP (log)	1716	-0.052	0.103	-0.729	0.212
	General gov. structural balance (% of potential GDP)	1716	-2.205	3.218	-19.155	7.763
	Output-side real GDP per capita (ppp)	1716	28018.389	16737.134	1976.453	102622.45
	OECD					
	TFP (log)	673	-0.038	0.082	-0.324	0.212
	General gov. structural balance (% of potential GDP)	673	-2.328	3.210	-19.155	5.505
	Output-side real GDP per capita (ppp)	673	39687.363	13605.848	11893.271	102622.45
	Non-OECD					
	TFP (log)	1043	-0.061	0.114	-0.729	0.168
	General gov. structural balance (% of potential GDP)	1043	-2.126	3.223	-14.233	7.763
Table 1	Output-side real GDP per capita (ppp)	1043	20488.937	14035.063	1976.453	82761.758
Summary statistics	Source(s): The author's own elaboration					

according to the summary statistics, the fiscal deficit in the OECD area is greater compared to the non-OECD group, thus suggesting that the OECD countries' fiscal stances are more frequently characterised by expansionary policies.

Since the time dimension of the panel is large enough, we investigate the stationarity properties of the variable by employing the so-called CIPS panel unit root test developed by Pesaran (2007). Such a test appears to be the most appropriate to accommodate the economic and statistical features of the phenomenon, as it allows for heterogeneous autoregressive parameters and cross-sectional dependence. The outcomes of the CIPS test, reported in Table A2, suggest that the variables are non-stationary in levels and stationary in first differences.

As a further step, we verify whether our variables of interest are cointegrated by implementing the panel cointegration test proposed by Westerlund (2007). Such a testing procedure consists of four versions – which in turn are grouped into *group-mean* and *panel* tests, depending on the alternative hypothesis specified – and allows for heterogeneous effects and correlation of the error within and across the sections. Unlike most of the existing cointegration tests, the Westerlund test is not based on the distribution of the residuals, as it builds on auxiliary conditional ECM equations and investigates the behaviour of the speed of adjustment term. The results, shown in Table A3, are consistent across the four versions of the test and suggest that TFP and fiscal structural balance are cointegrated, irrespective of whether the levels of output enter the cointegrating vector.

4. Econometric strategy

4.1 Endogeneity and heterogeneity

Since the variables are non-stationary in levels, we begin our analysis by specifying a shortrun dynamic equation. By denoting with y the logarithm of TFP (in real and power purchasing parity terms) and with x the government structural balance as a percentage of potential GDP, we can construct the following dynamic equation:

$$\Delta y_{it} = \gamma_i \Delta y_{it-1} + \beta_i \Delta x_{it} + \delta_i \Delta x_{it-1} + \alpha_i + e_{it}$$
(1)

where Δ is the first difference operator. We can notice that Equation (1) is a simple ARDL model of order one with the parameters γ , β , δ and α allowed to vary across the units *i*. Such parameters are distributed around a common mean with country-specific shocks. The ARDL structure is convenient to accommodate both the dynamic behaviour of technology and the fiscal feedback effects [1]. Equation (1) finds theoretical justifications in several relevant papers that highlighted direct or indirect channels through which government activity is associated with TFP or productivity in broad terms (Barro, 1990; Romer, 1990) – mainly due to the way government surplus/deficit affects the current and expected fiscal and financial costs of capital (Elmendorf and Mankiw, 1999; Codogno *et al.*, 2003; Laubach, 2009; Cochrane, 2011), the growth-maximising ratio between public and private capital stock (Aschauer, 2000) and the steady-state level output of the economies (Aizenman *et al.*, 2007).

The main problem when modelling the nexus between fiscal budget and TFP is endogeneity since discretional fiscal policy can be to a relevant extent affected by current and lagged productivity fluctuations (Hernández De Cos and Moral-Benito, 2013). On the theoretical side, the existence of a reverse causal mechanism linking fiscal policy to TFP – and thus to government structural balance – is mostly due to the automatic stabilisers of government expenditure and the countercyclical nature of discretionary fiscal policy (e.g. Taylor, 2000; Andrés and Doménech, 2006; Fontana, 2009; Chen and Guo, 2013). For instance, a recent study proposed by Sanz-Córdoba (2020) provides both theoretical and empirical evidence suggesting that the less (more) productive countries might impose higher (lower) tax

JES 51,9

116

rates to achieve a given level of tax revenue. Therefore, the main challenge is the identification of β – regardless of whether it is assumed to be homogeneous or heterogeneous across the countries. For that purpose, we accommodate any reverse causal effects by specifying the following dynamic equation for the government balance:

$$\Delta x_{it} = \psi_i \Delta x_{it-1} + \varkappa_i \Delta y_{it-1} + \eta_i + v_{it} \tag{2}$$

As we can see, Equation (2) follows the same structure as Equation (1), except for the lack of contemporaneous effects going from *y* to *x* – which is our identification condition for β . As a further step, we specify a linear nexus between e_{it} and v_{it} :

$$\mathbf{e}_{it} = \kappa_i v_{it} + \mu_{it} \tag{3}$$

where μ_{it} is assumed to be an idiosyncratic error term. Since κ_i significantly differs from zero, we can state that there is evidence of a simultaneous bilateral nexus between structural balance and TFP. By substituting Equation (3) and Equation (2) into Equation (1), we obtain the following short-run dynamic heterogeneous model:

$$\Delta y_{it} = \rho_i \Delta y_{it-1} + \beta_i \Delta x_{it} + \varphi_i \Delta x_{it-1} + c_i + \mu_{it} \tag{4}$$

where $\rho_i = \gamma_i - \kappa_i \varkappa_i$, $\varphi_i = \delta_i - \kappa_i \psi_i$ and $c_i = \alpha_i - \kappa_i \eta_i$. Since now the condition $E(\mu_{ii}|$ $v_{ii}) = E(\mu_{ii}|\Delta x_{ii}, \Delta x_{ii-1}, \Delta y_{ii-1}) = 0$ holds by construction, the estimate of β is filtered by the simultaneity between fiscal budget and TFP. However, Equation (4) still generates inconsistent estimates of β due to the existence of cross-sectional dependence. Therefore, we implement further steps in the next section.

4.2 Cointegration and unobserved global factors

In this section, we extend Equation (4) to accommodate the presence of unobserved global factors affecting TFP. The relevant role of unobserved heterogeneity in explaining crosscountry TFP differentials arises in Danquah *et al.* (2014), as the latter can be seen as a global process with country-specific absorptive capacity (Parente and Prescott, 2002; De Visscher *et al.*, 2017). Therefore, the presence of common factors within the sample related to productivity and the dynamics of technology introduces a problem of cross-sectional dependence (Schoonackers and Heylen, 2011). If the common effects were not properly modelled, the estimates of the coefficients would likely be biased (Everaert and De Groote, 2016). Thus, we model the following structure of the error term:

$$\mu_{it} = \Gamma'_i \boldsymbol{f}_t + \varepsilon_{it} \tag{5}$$

where \mathbf{f} is a set of unobserved common correlated factors whose impacts, given by the factorloadings Γ , are allowed to vary across the units. The term ε is the unobserved component independent on the covariates. Moreover, the autocovariance conditioned on the common factors is assumed to be null, i.e. $E(\varepsilon_{it}\varepsilon_{st}|\mathbf{f}_t) = 0 \ \forall i \neq s$. By following the common correlated effects (CCE) approach outlined in Pesaran (2006) and extended in Chudik and Pesaran (2015) to the dynamic specifications, we proxy the common correlated factors by including in the model the current and lagged cross-sectional averages of the dependent and independent variables. As suggested by Chudik and Pesaran (2015), adding the floor of $\sqrt[3]{T}$ lags of the cross-sectional variables is necessary to address the autocorrelation issue introduced by the presence of the lagged value of the dependent variable on the right-hand side of the equation. Recent results obtained in the econometric literature highlight some further appealing characteristics of the CCE framework for the cases of analyses similar to the one of the present study, as the related estimators are consistent even in the presence of linear dependence between the unobserved heterogeneity and the covariates (Juodis *et al.*, 2021) and their asymptotic normality persists even when the common factors are over-controlled for (Stauskas, 2023).

Since the two variables are *I* (1), we can reparametrize Equation (4) into a cross-sectionally augmented ECM version to distinguish short-run dynamics from long-run effects, as well as to accommodate common correlated effects and the convergence of the economies towards an equilibrium path:

$$\Delta y_{it} = \rho_i \Delta y_{it-1} + \beta_i \Delta x_{it} + \varphi_i \Delta x_{it-1} + \sum_{l=0}^{\sqrt[3]{T}} \boldsymbol{\zeta}'_{i,l} \Delta \boldsymbol{z}_{it-l} + \boldsymbol{\xi}(y_{it-1} - \boldsymbol{\theta} x_{it-1} - \boldsymbol{\omega}' \boldsymbol{z}_{it-1}) + c_i + \varepsilon_{it}$$
(6)

where the vector of the cross-sectional averages is given by $\boldsymbol{z}_t' = (\overline{y_t}, \overline{x_t})'$. The long-run coefficient associated with x is $\lambda = -\theta \xi$. The short- and long-run factor-loadings are contained, respectively, in the vectors $\boldsymbol{\zeta}$, and $\boldsymbol{\phi} = -\boldsymbol{\omega}'\boldsymbol{\zeta}$ represents the speed of adjustment to the equilibrium. A further advantage of the ECM specification is that the model allows for the non-stationarity of the unobserved global factors.

The baseline inferential technique employed to estimate Equation (6) is the pooled mean group estimator (PMG) proposed by Pesaran *et al.* (1999) as it allows short-run heterogeneous effects of both the covariates and the common shocks. The PMG estimator imposes cross-country homogeneity of the long-run coefficients and a common equilibrium path. To give a further sense of robustness, we also model heterogeneously the long-run nexus between fiscal adjustments and TFP by employing the MG estimator of Pesaran and Smith (1995). Although PMG normally gains efficiency relative to MG (Arnold *et al.*, 2011), the latter provides consistent estimates as our T is large enough. Moreover, the MG estimator allows for heterogeneous long-run effects of the unobserved global shocks across the economies – an economically relevant aspect.

5. Baseline results

Table 2 shows the estimates of Equation (6). Unlike Model A, Model B controls for the levels of output per capita (whose associated long-run coefficient is χ). For both versions of the model, we report the regressions with no cross-sectional averages and with their lagged values going from zero to the optimal one (which equals three). While, according to the outcomes of the cross-sectional dependence test, for the PMG (MG) estimates in Model A (Model B) one lag of the cross-sectional averages is enough to effectively accommodate the common shocks, for the other sets of regressions three lags are needed.

The impact of improvements in the fiscal budget is positive and significant – provided that GDP per capita is controlled for. The latter condition is crucial as it suggests that the long-run enhancements in productivity following episodes of fiscal consolidation emerge only if the fiscal surplus is run in such a way that long-run aggregate output growth is not negatively affected. In other words, such results emphasise the role of the structure of fiscal adjustments. For instance, if fiscal consolidation is accompanied by a shift of public resources from unproductive to productive expenditure, the marginal productivity of capital would be positively impacted, thus with beneficial effects on the long-run dynamics of TFP. Indeed, such a mechanism is consistent with theoretical and empirical findings which underline a high degree of complementarity between public and private capital (e.g. Aschauer, 1989; Abiad *et al.*, 2016). On the contrary, if fiscal consolidation is run by increasing corporate taxes, it would end up with negative long-run effects on TFP as it obstacles the capacities of the economies to reduce their gap with the global technological frontier – consistently with the arguments proposed by Schoonackers and Heylen (2011) and Everaert *et al.* (2015). The

JES 51,9	ę	0.2181*** (0.0276) (0.0000 (0.0009) 0.0017* (0.0010)	(0.0009) -0.7155*** (0.0753) 885 [37] 0.00448 0.980	0.1996*** (0.0009) 0.0004) (0.0005) 0.0005 0.0005) 0.0017***		uare brackets ross-sectional
118	2	0.2075*** (0.0182) 0.0004 (0.0007) 0.0016** (0.0007)	(0.0009) -0.7482*** (0.0437) 1,080 [46] 0.00458 7.59e-06	0.2007*** (0.009) 0.0010** (0.0005) 0.0005 0.0025**** 0.0006)	-0.7093*** -0.7993*** (0.0009) 1,080 [46] 4.96e-10 0.925	models. The squ A refers to the cr
	Model B 1	0.2100*** (0.0136) 0.0006 (0.0006) 0.0015** (0.0007)	(0.0008) -0.7685*** (0.0253) 1,158 [48] 0.00475 4.13e-09	0.2009*** (0.0009) 0.0011** (0.0005) 0.0027**** 0.00077	-0.7991*** -0.7991*** (0.0009) 1,158 [48] 5.48e-10 0.460	included in the uared error. CS.
	0	0.2067*** (0.0114) 0.0004 (0.0005) 0.0016*** (0.0005)	(0.0006) -0.7822**** (0.0184) 1.427 [62] 0.00506 0.00531	0.2008*** (0.0010) 0.0010** (0.0005) 0.0024**** 0.0007 0.0025***	-0.7992**** -0.7992**** (0.0010) 1,427 [62] 5.75e-10 0.571	cific trends are he root mean sq
	No CSA	0.2253*** (0.0102) 0.0007 0.0019*** (0.0006) 0.0020****	(0.0006) -0.7838*** (0.0157) 1,510 [68] 0.00609 0.00746	$\begin{array}{c} 0.2012^{***}\\ (0.0011)\\ 0.0012^{**}\\ (0.0005)\\ 0.0024^{****}\\ (0.0007)\\ 0.0027^{****}\\ 0.0027^{****}\end{array}$	-0.7988*** (0.0011) 1,510 [68] 6.11e-10 0.724	ear country-spe rted. RMSE is th
	ŝ	0.2002**** (0.0194) 0.0005 (0.0008) 0.0012 (0.0016)	-0.7634^{***} (0.0450) 1,062 [48] 0.00505 0.472	0.2009*** (0.0009) 0.0011** (0.0005) 0.0000 (0.0009)	-0.7991*** (0.0009) 1,062 [48] 5.10e-10 0.157	sspectively. Lind SD) test are repo
	2	0.2064*** (0.0140) 0.0004 (0.0006) 0.0009 (0.0011)	-0.7598*** (0.0334) 1,303 [62] 0.00502 0.911	0.2008*** (0.0010) 0.0010** (0.0005) 0.0002 (0.0006)	-0.7992*** (0.0010) 1,303 [62] 5.55 e -10 0.0488	5% and 10%, re dependence (CS er capita
	Model A 1	0.2041*** (0.0126) 0.0005 0.0005 0.0008 (0.0009)	-0.7828^{***} (0.0201) 1,442 [68] 0.00539 0.431	0.2012**** (0.0011) 0.0012*** (0.0005) 0.0004 (0.0006)	-0.7988*** (0.0011) 1,442 [68] 5.79 e -10 0.00544	ificance at 1%, trons exctional ted with GDP p
	0	0.2186*** (0.0129) 0.0005 0.0005 0.0009 (0.0007)	-0.7747*** (0.0156) 1,556 [72] 0.00549 0.502	0.2006*** (0.0011) 0.0009* (0.0006) 0.0004 (0.0006)	-0.7994*** (0.0011) 1,556 [72] 6.20e-10 0.0322	*, * denote signi e p-values of the efficient association elaboration
	No CSA	0.2323*** (0.0110) 0.0007 (0.0005) 0.0015** (0.0006)	-0.7765*** (0.0174) 1,566 [73] 0.00629 1.266-09	0.2007*** (0.0011) 0.0010* (0.0005) 0.0004 (0.0008)	-0.7993*** (0.0011) 1,566 [73] 6.66e-10 0.00148	asterisks ***, ** dard errors. The he long-run coe ne author's own
Table 2. Baseline estimates	CSA lags	$\begin{array}{c} PMG \\ \widehat{eta}_i, \\ \widehat{eta}_i, \\ \widehat{eta}_i \end{array}$	ξ Obs. [N] RMSE CSD <i>p</i> -value	MG $\widehat{ ho}_{i}$ $\widehat{\lambda}_{i}$	ç̃ _i Obs. [N] RMSE CSD <i>p</i> -value	Note(s): The report the stan averages. $\hat{\chi}$ is t Source(s): The stan averages $\hat{\chi}$ is t

effects of short-run variations in the fiscal budget are insignificant in pooled models, whereas some evidence of significant effects emerges in MG estimates. Although the short- and longrun estimated coefficients are slightly higher in the fully heterogeneous models, the results in terms of sign and significance are closely aligned. The speed of adjustment term, ranging from -0.8004 to -0.7155, is significant across all the specifications, suggesting that the economies' adjustment to the (common or country-specific) equilibrium path following a shock in productivity is fast.

It is worth pointing out that the similar long-run estimates between pooled and heterogeneous models do not necessarily imply that the underlying relationship is homogeneous across the countries, as the MG estimates rather reflect an average effect without ruling out the presence of a relevant share of observations that behaves much different from the mass of the distribution. Therefore, as a general rule, it appears convenient to estimate, in addition to pooled models, fully heterogeneous regressions since the TFP levels and dynamics are profoundly different across the economies – even when considering subsets of countries that share similar structural characteristics – although allowing for long-run heterogeneity represents a cost in terms of efficiency (Arnold *et al.*, 2011).

6. Robustness checks

Although in the previous section we evaluate the robustness of the estimates of Equation (6) by considering several methodological alternatives, as well as by assessing the behaviour of the model when a key additional control – the output per capita – is controlled for, in this section we aim at further testing the robustness of the estimates by including additional sets of controls. In addition, we conduct additional empirical exercises in order to address different economic aspects of the phenomenon under analysis, given the availability of our data of interest. Therefore, we proceed as follows.

Firstly, we estimate the models for the full sample by adding as an additional control the international openness index – defined as the sum of imports and exports over GDP (Table A5). Such a choice is due to the relevance of international trade and competition for the dynamics of TFP, especially within a long-run perspective. Moreover, we report in Table A6 the estimates for the entire sample when the full set of controls is considered – i.e. when we control for the demographic trajectories and the financial environment, proxied by the population share of the labour force and the inflation rate, respectively. Such controls are carefully chosen following the existing empirical literature (e.g. Grossman and Helpman, 1993; Beaudry and Green, 2002; Acemoglu, 2010; Danquah *et al.*, 2014) and accounting for the availability of data. The latter aspect is particularly relevant and represents the main constraint in our case since the empirical setup proposed in this study requires sufficiently large *N* and *T* for the model to perform well. Indeed, it appears worth recalling that the model – especially when considering an unbalanced panel – loses a relevant number of observations as the number of lags of the cross-sectional averages increases.

Secondly, we make a bipartition of the sample into OECD and non-OECD countries (Table A6 and Table A7), in order to assess whether and to which extent the relationship differs across the two groups [2]. Although the estimates for the full sample suggest that the relationship under analysis is significantly heterogeneous across the countries, grouping the units into two main categories could provide useful economic insights (see, for instance, Färe *et al.* (1994)). Danquah *et al.* (2014) highlight that the determinants of TFP differ between OECD and non-OECD groups. Consistently, we chose the additional controls for the two groups according to the results proposed by Danquah *et al.* (2014).

Thirdly, since the period 1980–2019 was characterised by several social, political and economic shocks, we split the time interval by considering, separately, the 2007 global financial crisis (Table A8 and Table A9) and the 2011 European sovereign debt crisis

Fiscal adjustments and TFP dynamics

119

(Table A10 and Table A11). Using 2007 and 2011 as time thresholds appears to be an acceptable compromise between the detail degree of the subperiods considered and the need to maintain a large enough time dimension to consistently estimate the coefficients – especially when assuming long-run slope heterogeneity. Moreover, the two events considered represent the most relevant economic disruptions over the time horizon employed in this study. Since the bipartition of the time dimension implies a substantial restriction of the time spans, we consider as the control variable only the output per capita in order to avoid further losses of observations and reductions in the cross-sectional dimension. Furthermore, considering that the time-splitting process drastically reduces the temporal dimension and the total number of observations, especially when considering the regressions post 2008 and 2011, we do not report the estimates for some of the specifications that require a positive number of lags of the cross-sectional averages in order to maintain a sufficient large dimension of N and T.

The overall results for the whole sample closely align with their baseline counterparts, except for a slighter magnitude long-run effect of budget surpluses, with no relevant differences when the long-run nexus between fiscal budget and TFP is modelled heterogeneously. No diverging conclusions arise even when splitting the time interval. As it concerns the distinction between OECD and non-OECD groups, we can notice some relevant differences. Unlike for the OECD countries, the significance of the estimates associated with the non-OECD economies appears to be slightly different compared to the full sample regressions. Indeed, while within the OECD area fiscal consolidation stimulates TFP in the long-run, if the fiscal adjustment is not contractionary for the aggregate output, such evidence is weaker for the non-OECD subsample. In fact, as all the controls are included in the model, the significant effect of government structural balance disappears for non-OECD economies. This might be to a relevant extent due to the higher marginal product to capital and expected growth rates when the economies' output levels are relatively far from their steady-state levels, thus compensating on average any detrimental long-run effect of deficitfinanced unproductive expenditure on TFP. However, it is worth stressing that cross-country heterogeneity is significant even within the OECD and non-OECD groups, thus suggesting parsimony when proposing general policy recommendations.

7. Concluding remarks

The economic and financial global shocks that occurred over the past two decades have pushed governments, mainly in advanced economies, to stimulate growth and contrast social disruptions by massively resorting to deficit-financed expenditures, thus raising serious concerns about the sustainability of public finances in a long-term perspective. At the same time, the growth of productivity is weak or even negative in several countries, likely triggering the existing slowdowns in aggregate output growth. Since the empirical literature provides evidence of significant links between fiscal policy and productivity, it seems to be useful for both academics and policymakers to further investigate additional features of the phenomenon.

This article contributes to the literature on the nexus between fiscal policy and productivity by estimating the effects of fiscal adjustments on TFP while accounting for endogeneity, non-stationarity, country heterogeneity, fiscal feedback effects and global unobserved factors. The overall results suggest that improvements in fiscal structural balance stimulate the long-run dynamics of TFP if the government surplus does not exert downturns in aggregate output. Therefore, the productivity effects of fiscal consolidations are likely to depend on the way policymakers combine variations in expenditure and taxation – similar to what is suggested in Alesina and Perotti (1997) for the effects of fiscal adjustments on aggregate output.

120

JES

51.9

Schoonackers and Heylen (2011) and Baneriee and Zampolli (2019), it appears reasonable to state that any fiscal adjustment that improves the efficiency of public resource allocation ends up with beneficial effects for the TFP's long-run dynamics through improvements in the economies' access to the worldwide available technology. Conversely, running fiscal surpluses by cutting productive expenditure and/or by increasing the fiscal burden on firms through distortive taxation may offset the positive effects exerted by more sustainable fiscal stances, and could imply a reduction in public and private capital accumulation (Calderón et al., 2015; Bardaka et al., 2021; Baussola and Carvelli, 2023), with detrimental effects on the long-run dynamics of TFP. However, it is worth pointing out that while the findings for the full sample are broadly confirmed for the OECD subsample, neutral long-run effects of fiscal structural balance arise when the sample is restricted to the non-OECD countries – thus suggesting that the transmission channels linking fiscal policy to productivity could be different for the two groups. In fact, the differences in terms of TFP dynamics and determinants between OECD and non-OECD countries were already discussed by Färe et al., (1994) and Danguah et al. (2014) and are likely due, to a large extent, to the different social, political and economic environments – although we find evidence of cross-country heterogeneity even within the non-OECD group.

Considering the results that arose in the existing literature and this study, we believe that further research should investigate how the single components of government expenditure and revenues, as well as their combinations, affect the dynamics of TFP and how any significant effect evolves from the short-to the long-run. Moreover, employing the government budget constraint (GBC) in the model might provide useful insights and disentangle whether and how the effects on productivity exerted by fiscal expansion (austerity) depend on the goods and services financed (cut) and/or by the reduction (raise) in specific categories of tax and non-tax revenues.

Notes

- 1. See Ramey (2011) and Abiad et al. (2016) for the relevance of lagged fiscal effects.
- 2. In this study, we categorise as OECD member the countries that entered the group by 1980 that is the first year of the time span considered in the analysis. Such a choice is due to the willingness to avoid massive observation losses in the MG estimates, which would result by allowing the units to switch from one group to another over the period considered.

References

- Abiad, A., Furceri, D. and Topalova, T. (2016), "The macroeconomic effects of public investment: evidence from advanced economies", *Journal of Macroeconomics*, Vol. 50, pp. 224-240, doi: 10. 1016/j.jmacro.2016.07.005.
- Acemoglu, D. (2010), "When does labor scarcity encourage innovation?", *Journal of Political Economy*, Vol. 118 No. 6, pp. 1037-1078, doi: 10.1086/658160.
- Afonso, A. and Aubyn, St.M. (2010), "Public and private investment rates of return: evidence for industrialized countries", *Applied Economics Letters*, Vol. 17 No. 9, pp. 839-843, doi: 10.1080/ 13504850802599425.
- Aizenman, J., Kletzer, K. and Pinto, B. (2007), "Economic growth with constraints on tax revenues and public debt: implications for fiscal policy and cross-country differences", doi: 10.3386/w12750.
- Alesina, A. and Perotti, R. (1997), "Fiscal adjustments in OECD countries: composition and macroeconomic effects", *Staff Papers*, Vol. 44 No. 2, pp. 210-248, doi: 10.2307/3867543.
- Andrés, J. and Doménech, R. (2006), "Automatic stabilizers, fiscal rules and macroeconomic stability", European Economic Review, Vol. 50 No. 6, pp. 1487-1506, doi: 10.1016/j.euroecorev.2005.03.005.

Arnold, J., Bassanini, A. and Scarpetta, S. (2011), "Solow or Lucas? Testing speed of convergence on a
panel of OECD countries", Research in Economics, Vol. 65 No. 2, pp. 110-123, doi: 10.1016/j.rie.
2010.11.005.

- Aschauer, D.A. (1989), "Is public expenditure productive?", *Journal of Monetary Economics*, Vol. 23 No. 2, pp. 177-200, doi: 10.1016/0304-3932(89)90047-0.
- Aschauer, D.A. (2000), "Do states optimize? Public capital and economic growth", *The Annals of Regional Science*, Vol. 34, pp. 343-363, doi: 10.1007/s001689900016.
- Baier, S.L., Dwyer, G.P. Jr and Tamura, R. (2006), "How important are capital and total factor productivity for economic growth?", *Economic Inquiry*, Vol. 44 No. 1, pp. 23-49, doi: 10.1093/ei/ cbj003.
- Banerjee, R. and Zampolli, F. (2019), "What drives the short-run costs of fiscal consolidation? Evidence from OECD countries", *Economic Modelling*, Vol. 82, pp. 420-436, doi: 10.1016/j.econmod.2019. 01.023.
- Bardaka, I., Bournakis, I. and Kaplanoglou, G. (2021), "Total factor productivity (TFP) and fiscal consolidation: how harmful is austerity?", *Economic Modelling*, Vol. 94, pp. 908-922, doi: 10. 1016/j.econmod.2020.02.032.
- Barro, R.J. (1990), "Government spending in a simple model of endogeneous growth", Journal of Political Economy, Vol. 98 No. 5, Part 2, pp. S103-S125, doi: 10.1086/261726.
- Baussola, M. and Carvelli, G. (2023), "Public and private investments: long-run asymmetric effects in France and the US", *Finance Research Letters*, Vol. 58, Part A, 104317, doi: 10.1016/j.frl.2023. 104317.
- Beaudry, P. and Green, D.A. (2002), "Population growth, technological adoption, and economic outcomes in the information era", *Review of Economic Dynamics*, Vol. 5 No. 4, pp. 749-774, doi: 10.1006/redy.2002.0189.
- Blanchard, O. and Perotti, R. (2002), "An empirical characterization of the dynamic effects of changes in government spending and taxes on output", *The Quarterly Journal of Economics*, Vol. 117 No. 4, pp. 1329-1368, doi: 10.1162/003355302320935043.
- Calderón, C., Moral-Benito, E. and Servén, L. (2015), "Is infrastructure capital productive? A dynamic heterogeneous approach", *Journal of Applied Econometrics*, Vol. 30 No. 2, pp. 177-198, doi: 10. 1002/jae.2373.
- Carvelli, G. (2023), "Exogenous variations in public debt and the private output: addressing country heterogeneity and cross-sectional dependence in a large panel", *Applied Economics*, pp. 1-22, doi: 10.1080/00036846.2023.2177602.
- Caselli, F. (2005), "Accounting for cross-country income differences", Handbook of Economic Growth, Vol. 1, pp. 679-741, doi: 10.1016/S1574-0684(05)01009-9.
- Castro, V. (2017), "The impact of fiscal consolidations on the functional components of government expenditures", *Economic Modelling*, Vol. 60, pp. 138-150, doi: 10.1016/j.econmod.2016.09.027.
- Chen, S.H. and Guo, J.T. (2013), "Progressive taxation and macroeconomic (In) stability with productive government spending", *Journal of Economic Dynamics and Control*, Vol. 37 No. 5, pp. 951-963, doi: 10.1016/j.jedc.2013.01.004.
- Chudik, A. and Pesaran, M.H. (2015), "Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors", *Journal of Econometrics*, Vol. 188 No. 2, pp. 393-420, doi: 10.1016/j.jeconom.2015.03.007.
- Ciaffi, G., Deleidi, M. and Di Bucchianico, S. (2022), Stagnation despite ongoing innovation: Is R&D expenditure composition a missing link? An empirical analysis for the US (1948-2019), Department of Economics, No. 877, University of Siena.
- Cochrane, J.H. (2011), "Understanding policy in the great recession: some unpleasant fiscal arithmetic", *European Economic Review*, Vol. 55 No. 1, pp. 2-30, doi: 10.1016/j.euroecorev.2010.11.002.

JES 51 9

- Codogno, L., Favero, C. and Missale, A. (2003), "Yield spreads on EMU government bonds", *Economic Policy*, Vol. 18 No. 37, pp. 503-532, doi: 10.1111/1468-0327.00114_1.
- Danquah, M., Moral-Benito, E. and Ouattara, B. (2014), "TFP growth and its determinants: a model averaging approach", *Empirical Economics*, Vol. 47, pp. 227-251, doi: 10.1007/s00181-013-0737-y.
- Dar, A.A. and AmirKhalkhali, S. (2002), "Government size, factor accumulation, and economic growth: evidence from OECD countries", *Journal of Policy Modeling*, Vol. 24 Nos 7-8, pp. 679-692, doi: 10. 1016/S0161-8938(02)00163-1.
- De Visscher, S., Eberhardt, M. and Everaert, G. (2017), "Measuring productivity and absorptive capacity evolution in OECD economies", CEPR Discussion Paper No. DP12261.
- Elmendorf, D.W. and Mankiw, N.G. (1999), "Government debt", Handbook of Macroeconomics, Vol. 1, pp. 1615-1669, doi: 10.1016/S1574-0048(99)10038-7.
- Everaert, G. and De Groote, T. (2016), "Common correlated effects estimation of dynamic panels with cross-sectional dependence", *Econometric Reviews*, Vol. 35 No. 3, pp. 428-463, doi: 10.1080/ 07474938.2014.966635.
- Everaert, G., Heylen, F. and Schoonackers, R. (2015), "Fiscal policy and TFP in the OECD: measuring direct and indirect effects", *Empirical Economics*, Vol. 49, pp. 605-640, doi: 10.1007/s00181-014-0872-0.
- Färe, R., Grosskopf, S., Norris, M. and Zhang, Z. (1994), "Productivity growth, technical progress, and efficiency change in industrialized countries", *American Economic Review*, Vol. 84, pp. 66-83.
- Feenstra, R.C., Inklaar, R. and Timmer, M.P. (2015), "The next generation of the penn World table", American Economic Review, Vol. 105 No. 10, pp. 3150-3182, doi: 10.34894/QT5BCC.
- Fernald, J., Inklaar, R. and Ruzic, D. (2023), "The productivity slowdown in advanced economies: common shocks or common trends?", Federal Reserve Bank of San Francisco Working Paper Series, pp. 2023-2107.
- Fontana, G. (2009), "Whither new consensus macroeconomics? The role of government and fiscal policy in modern macroeconomics", Levy Economics Institute, Working Paper 563.
- Grossman, G.M. and Helpman, E. (1993), *Innovation and Growth in the Global Economy*, MIT Press, Cambridge.
- Hall, R.E. and Jones, C.I. (1999), "Why do some countries produce so much more output per worker than others?", *The Quarterly Journal of Economics*, Vol. 114 No. 1, pp. 83-116, doi: 10.1162/ 003355399555954.
- Hernández De Cos, P. and Moral-Benito, E. (2013), "Fiscal consolidations and economic growth", Fiscal Studies, Vol. 34 No. 4, pp. 491-515, doi: 10.1111/j.1475-5890.2013.12017.x.
- Jia, F., Ma, X., Xu, X. and Xie, L. (2020), "The differential role of manufacturing and nonmanufacturing TFP growth in economic growth", *Structural Change and Economic Dynamics*, Vol. 52, pp. 174-183, doi: 10.1016/j.strueco.2019.10.006.
- Juodis, A., Karabiyik, H. and Westerlund, J. (2021), "On the robustness of the pooled CCE estimator", *Journal of Econometrics*, Vol. 220 No. 2, pp. 325-348, doi: 10.1016/j.jeconom.2020.06.002.
- Kose, M.A., Ohnsorge, F.L., Reinhart, C.M. and Rogoff, K.S. (2022), "The aftermath of debt surges", *Annual Review of Economics*, Vol. 14, pp. 637-663, doi: 10.1146/annurev-economics-051420-015343.
- Krugman, P.R. (1997), The Age of Diminished Expectations: US Economic Policy in the 1990s, MIT Press, Cambridge.
- Laubach, T. (2009), "New evidence on the interest rate effects of budget deficits and debt", *Journal of the European Economic Association*, Vol. 7 No. 4, pp. 858-885, doi: 10.1162/JEEA.2009.7.4.858.
- Mankiw, N.G., Romer, D. and Weil, D.N. (1992), "A contribution to the empirics of economic growth", *The Quarterly Journal of Economics*, Vol. 107 No. 2, pp. 407-437, doi: 10.2307/2118477.

123

JES 51,9	Owusu, B., Bökemeier, B. and Greiner, A. (2023), "Assessing nonlinearities and heterogeneity in debt sustainability analysis: a panel spline approach", <i>Empirical Economics</i> , Vol. 64 No. 3, pp. 1315-1346, doi: 10.1007/s00181-022-02284-8.
	Parente, S.L. and Prescott, E.C. (2002), Barriers to Riches, MIT Press, Cambridge.
	Pereira, A.M. (2000), "Is all public capital created equal?", <i>Review of Economics and Statistics</i> , Vol. 82 No. 3, pp. 513-518, doi: 10.1162/rest.2000.82.3.513.
124	Pesaran, M.H. (2006), "Estimation and inference in large heterogeneous panels with a multifactor error structure", <i>Econometrica</i> , Vol. 74 No. 4, pp. 967-1012, doi: 10.1111/j.1468-0262.2006.00692.x.
	Pesaran, M.H. (2007), "A simple panel unit root test in the presence of cross-section dependence", Journal of Applied Econometrics, Vol. 22 No. 2, pp. 265-312, doi: 10.1002/jae.951.
	Pesaran, M.H. and Smith, R. (1995), "Estimating long-run relationships from dynamic heterogeneous panels", <i>Journal of Econometrics</i> , Vol. 68 No. 1, pp. 79-113, doi: 10.1016/0304-4076(94)01644-F.

Pesaran, M.H., Shin, Y. and Smith, R.P. (1999), "Pooled mean group estimation of dynamic heterogeneous panels", Journal of the American Statistical Association, Vol. 94 No. 446, pp. 621-634, doi: 10.2307/2670182.

- Ramey, V.A. (2011), "Identifying government spending shocks: it's all in the timing", The Quarterly Journal of Economics, Vol. 126 No. 1, pp. 1-50, doi: 10.1093/gje/gjq008.
- Rogoff, K. (2021), "Fiscal sustainability in the aftermath of the great pause", Journal of Policy Modeling, Vol. 43 No. 4, pp. 783-793, doi: 10.1016/j.jpolmod.2021.02.007.
- Rogoff, K. (2022), "Emerging market sovereign debt in the aftermath of the pandemic", Journal of Economic Perspectives, Vol. 36 No. 4, pp. 147-166, doi: 10.1257/jep.36.4.147.
- Romer, P.M. (1990), "Endogenous technological change", Journal of Political Economy, Vol. 98 No. 5, Part 2, pp. S71-S102, doi: 10.1086/261725.
- Sanz-Córdoba, P. (2020), "The role of infrastructure investment and factor productivity in international tax competition", Economic Modelling, Vol. 85, pp. 30-38, doi: 10.1016/j.econmod. 2019.05.003.
- Schoonackers, R. and Heylen, F. (2011), Fiscal Policy and TFP in the OECD: A Non-stationary Panel Approach, Faculty of Economics and Business Administration, No. 11/701, Ghent University.
- Solow, R.M. (1957), "Technical change and the aggregate production function", The Review of Economics and Statistics, Vol. 39 No. 3, pp. 312-320, doi: 10.2307/1926047.
- Stauskas, O. (2023), "Complete theory for CCE under heterogeneous slopes and general unknown factors", Oxford Bulletin of Economics and Statistics, Vol. 85 No. 2, pp. 283-303, doi: 10.1111/ obes.12523.
- Taylor, J.B. (2000), "Reassessing discretionary fiscal policy", Journal of Economic Perspectives, Vol. 14 No. 3, pp. 21-36, doi: 10.1257/jep.14.3.21.
- Wang, L. (2023), "Digital transformation and total factor productivity", Finance Research Letters, 104338, doi: 10.1016/j.frl.2023.104338.
- Westerlund, J. (2007), "Testing for error correction in panel data", Oxford Bulletin of Economics and Statistics, Vol. 69 No. 6, pp. 709-748, doi: 10.1111/j.1468-0084.2007.00477.x.
- Yang, W., Fidrmuc, J. and Ghosh, S. (2015), "Macroeconomic effects of fiscal adjustment: a tale of two approaches", Journal of International Money and Finance, Vol. 57, pp. 31-60, doi: 10.1016/j. jimonfin.2015.05.003.

Corresponding author

Gianni Carvelli can be contacted at: gianni.carvelli@unicatt.it

	1.
Annon	1177
ADDED	ннх

OECD	Non-OECD		uynamics
Australia	Angola	Lithuania	105
Austria	Argentina	Malaysia	125
Belgium	Brazil	Malta	
Canada	Bulgaria	Mauritius	
Denmark	Chile	Mexico	
Finland	China	Morocco	
France	China, Hong Kong SAR	Panama	
Germany	Colombia	Paraguay	
Greece	Costa Rica	Peru	
Iceland	Croatia	Philippines	
Ireland	Cyprus	Poland	
Italy	Czech Republic	Republic of Korea	
Japan	Dominican Republic	Romania	
Luxembourg	Ecuador	Russian Federation	
Netherlands	Egypt	Serbia	
New Zealand	Estonia	Singapore	
Norway	Guatemala	Slovakia	
Portugal	Hungary	Slovenia	
Spain	India	South Africa	
Sweden	Indonesia	Switzerland	
Turkey	Israel	Taiwan	
United Kingdom	Jordan	Thailand	
USA	Kazakhstan	Tunisia	
	Kyrgyzstan	Ukraine	
	Latvia	Uruguay	Table A1
Source(s): The author's ow	vn elaboration	- •	List of countries

		Levels			First differences	
Lags	1	2	3	1	2	3
<i>Without trend</i> TFP Gov. struc. bal	-1.142 -2.229^{*}	$-1.468 \\ -2.091$	-1.311 -2.129	-4.962*** -5.875***	-4.962*** -5.875***	-5.002*** -5.668***
<i>With trend</i> TFP Gov. struc. bal	$-1.645 \\ -2.484$	$-2.060 \\ -2.301$	-2.060 -2.895^{**}	-5.415^{***} -6.066^{***}	-5.415^{***} -6.066^{***}	-5.500*** -5.822***
Note(s): The CI according to the a Source(s): The s	PS test verifies Akaike informa author's own e	s the null hyp ation criterion laboration	oothesis of non- . The linear tim	stationarity. The e-trend term is ir	e optimal lag leng ncluded in the equ	th is selected ations

Table A2.CIPS panel unitroot test

JES 51,9	Lags	1	Without trend	3	1	With trend	3
	Without C	GDP					
126	Panel stat P_{τ} P_{α}	istics -3.152* -6.000***	-4.001^{***} -5.283^{***}	-4.994*** -7.031***	-1.519 -2.313	-3.745^{**} -5.544^{***}	-5.090*** -4.965***
		an statistics —2.099 —1.012	-4.298*** -5.722***	-6.902*** -5.722***	-3.509^{**} -2.171^{**}	-3.511^{**} -4.699^{***}	-3.719** -5.700***
	With GDF	0					
	Panel stat P_{τ} P_{α}	istics -1.320 -1.031	-3.989*** -2.520*	-4.573^{***} -2.909^{*}	$-1.414 \\ -1.555$	-3.401^{**} -3.806^{***}	-3.616^{**} -4.010^{***}
	Group-me G _τ G _a	an statistics -3.540** -1.031	-3.212^{**} -5.430^{***}	-3.688** -5.492***	-3.313** -1.356	-3.981^{***} -5.008^{***}	-5.019^{***} -5.493^{***}
Table A3. Westerlund test for cointegration	Note(s): through t equation. critical va significan	The test verifie the semiparame The autoregres lues are obtained ce at 1%, 5% as	es the null hypothes etric Kernel estima ssive coefficients for ed through a bootstruind 10%, respective sown elaboration	sis of no cointegr ation of the autor r the test statist ap procedure wit ely	ation. The test s pregressive coeffices P_{τ} and G_{τ} are h 500 replication	tatistics P_{α} and G_{α} ficient of the con- e estimated conver s. The asterisks **	, are obtained ditional ECM ntionally. The *, **, * denote

3	(0011) (0011) (0008) (0008) (0003) (0013** (0013** (0013** (0013) (0026) (0026) (0026) (0026) (0026) (0026) (0026) (0026) (0021) (122] (122] (122] (122] (122) (12	Fisca adjustment
		dynamics
2	0.2007**** (0.0011) 0.0008* (0.0004) 0.0010* 0.0006) 0.0007 0.0001 0.00005 0.0001 0.00005 0.00005 0.0001 0.0001 0.00005 0.0001 0.00005 0.00007 0.0001 0.0001 0.00005 0.00007 0.0001 0.00005 0.00007 0.00005 0.00007 0.00007 0.00010 0.00007 0.00010 0.00007 0.00007 0.00007 0.00001 0.00007 0.00001 0.00007 0.0007 0.00000000	A refers to the The state of th
MG 1	0.1989**** (0.0012) 0.0010* (0.0006) 0.0012**** (0.0003* (0.0003) 0.0013* (0.0003) 0.0013* (0.0012) 642 [22] 4.84e-10 0.710	ared error. CS/
0	0.2002**** (0.0009) 0.0008 (0.0006) 0.0008* (0.0004) 0.0021**** (0.0005) 0.0010 0.00010 (0.0018) 0.0010 0.0009) 1.066 [41] 5.18e-10 0.430	ific trends are ir e root mean squ vely
No CSA	0.2010**** (0.0009) 0.0010* (0.0006) 0.0011*** (0.0006) 0.0026**** (0.0006) 0.0025**** (0.0006) 0.0031** (0.0015) 0.0031** (0.0009) 1.170 [47] 5.51e-10 0.238	ar country-spec ted. RMSE is th index, respecti
co C	0.1612**** (0.0350) 0.0010 0.0011) 0.00111 0.00111 0.00111 0.0022 0.00239 (0.0176) -0.8280*** (0.0359) 374 [12] 0.00297 0.00297 0.00297	spectively. Line ((CSI)) are report a and openness
2	0.1936**** (0.0215) 0.0009 0.0009 (0.0010) 0.0002 0.0001) 0.0002 0.0010) 0.0010) 0.0010 0.0110) 0.0110) 0.0110] 486 [16] 0.001341 0.00341 0.00341 0.00341 0.00341 0.00341 0.0000341 0.0000341 0.0000341 0.000341 0.000341 00	% and 10%, re dependence test h GDP per capit
PMG 1	0.2118**** (0.0213) -0.0002 (0.0012) (0.0012) (0.0012) (0.0012) (0.0012) (0.0012) (0.0013) (0.0015) (0.0015) (0.0015) (0.0123) (0.0123) (0.0123) (0.0123) (0.0123) (0.0123) (0.0015) (0.0012) (0	ficance at 1%, f cross-sectional associated with
0	0.2178**** (0.0181) 0.0004 (0.0006) 0.0006**** (0.0007) 0.0016*** (0.0007) 0.0005 (0.0071) 0.0071 1,060 [41] 0.00434 0.000	<pre>*, * denote sign * /* denote sign * /* denote sign - run coefficient elaboration</pre>
No CSA	0.2289**** (0.0187) 0.0008 (0.0006) 0.0007 0.0007) (0.0007) 0.0021 (0.0007) 0.0023 (0.0061) 0.7611**** (0.0023) 1,170 [47] 0.00541 0.00541	isterisks ****, ** lard errors. The 1 ? are the long te author's own te author's own
CSA lags	$\begin{array}{c} \widehat{\rho}_{i}\\ \widehat{\rho}_{i}\\ \widehat{\rho}\\ \widehat{\lambda}\\ \lambda$	Not an a netrational controls, full sample

JES 51,9	ę	0.1996**** (0.0003) 0.0004 (0.0004) 0.0017**** (0.0005) 0.0019*** (0.0077) 0.00328*** (0.0091) -0.0349 (0.0091) -0.0349 (0.0091) -0.0349 (0.0003) 698 [28] 4.200-10 0.119 arre brackets :oss-sectional
128	2	0.1971**** (0.0022) 0.0002 (0.0004) 0.0013*** (0.0007) 0.00172**** (0.0071 0.01733) 0.0072 (0.0071 0.0072 (0.0071 (0.0072) 0.0092 (0.0071 (0.0092) (0.0092) (0.0092) (0.0097) 821[34] 4.43e-10 0.543 821[34] 4.43e-10 0.543 models. The seq A refers to the ci crively
	MG 1	0.1998**** (0.0010) 0.0005 (0.0005) 0.0019**** (0.007) 0.0017** (0.007) 0.0017** (0.007) 0.0122*** (0.0051) -0.0087 (0.0031) -0.0087 (0.0031) -0.0087 (0.0010) 8851363 4.72e-10 0.007255 included in the lation rate, resp.
	0	0.1987**** (0.0012) -0.0006 (0.0006) (0.0005) (0.0006) (0.0005) (0.0005) (0.0004) (0.0123) (0.0013**** (0.0013**** (0.0013) -0.0074 (0.0013) -0.0074 (0.0012) 5.47e-10 0.0278 5.47e-10 0.0278 5.47e-10 0.0278 5.47e-10 0.0278 5.47e-10 0.0278 5.47e-10 0.0278 5.47e-10 0.0278 5.47e-10 0.0278
	No CSA	0.1987**** (0.0012) -0.0006 (0.0005) (0.0007) 0.0015** (0.0077) 0.0069) 0.00690 (0.0072) -0.0037 (0.0022) 0.0092 (0.0012) 961 [39] 5.85e-10 0.00295 961 [39] 5.85e-10 0.00295 ear country-spe ear country-spe ear country-spe ear country-spe
	ŝ	0.1683**** (0.0127) 0.00127) 0.0005 (0.0006) 0.0014*** (0.0008) 0.0028**** (0.0008) 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.00268 0.00268 0.00268 0.00268 0.0268 0.0268 0.0268 0.0268 0.0268 0.0268 0.0268 0.0268 0.0268 0.0268 0.0268 0.0268 0.0268 0.0268 0.0268 0.0268 0.0268 0.00268 0.00268 0.00268 0.00268 0.00268 0.00268 0.00268 0.00268 0.00268 0.00268 0.00268 0.00268 0.00268 0.00268 0.00268 0.00250 0.00268 0.00250 0.00250 0.00191 0.00250 0.00191 0.00250 0.00191 0.00191 0.00250 0.00191 0.00250 0.00191 0.00250 0.00191 0.0006 0.00006 0.00006 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000
	2	0.1610**** (0.0098) 0.0000 (0.006) 0.0011 (0.007) 0.0031**** (0.0031**** (0.0043) 0.0224** (0.0043) 0.0128**** (0.0043) 0.0128**** (0.0043) 0.0128**** (0.0043) 0.0128**** (0.0043) 0.02509**** (0.0106) 821 [34] 0.00290 0.480 0.480 0.480 0.480 0.480 0.480 0.480 0.480 0.480 0.480 0.0480 0.480 0.0480 0.0480 0.0480 0.0480 0.0480 0.0480 0.0480 0.0480 0.0480 0.0480 0.0480 0.0480 0.0480 0.0480 0.0480 0.0480 0.0480 0.000290 0.0480 0.000290 0.0480 0.000290 0.0480 0.000290 0.0480 0.000290 0.0480 0.000290 0.0480 0.000290 0.000290 0.000290 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000
	PMG 1	0.1683**** (0.0089) 0.0002 (0.0006) 0.0012*** (0.0009) 0.0026**** (0.0009) 0.0102** (0.00354) 0.0102 0.0119 (0.0354) 0.0102 0.0119 (0.0231) 0.0102 0.0119 (0.0231) 0.00354) 8851365 0.00315 0.00012***
	0	0.1978^{****} (0.0238) 0.0000 (0.0066) (0.0006) 0.0011* (0.0006) 0.0016^{***} (0.0016) 0.0061) 0.0061) 0.0061) 0.00750 0.0071) 0.0175 0.00750 0.007139 0.00750 0.007139 0.00350 0.00350 0.00350 0.00350 0.00350 0.00350 efaboration etaboration
	No CSA	$\begin{array}{c} 0.2106^{****}\\ (0.0214)\\ -0.0000\\ (0.007)\\ (0.007)\\ 0.0011\\ (0.0008)\\ (0.0061)\\ (0.0061)\\ (0.0061)\\ (0.0061)\\ (0.0061)\\ (0.0061)\\ (0.00138\\ (0.00138\\ (0.0143)\\ (0.0037\\ (0.0037)\\ (0.00319)\\ 0.00438\\ (0.0128\\ (0.0138)\\ (0.00319)\\ (0.0138)\\ (0.00319)\\ (0.0138)\\ (0.00328)\\ (0.00319)\\ (0.00319)\\ (0.00319)\\ (0.00328)\\ (0.00328)\\ (0.00319)\\ (0.00319)\\ (0.00319)\\ (0.00319)\\ (0.00319)\\ (0.00319)\\ (0.00319)\\ (0.00319)\\ (0.00319)\\ (0.00319)\\ (0.00319)\\ (0.00319)\\ (0.00319)\\ (0.00319)\\ (0.00319)\\ (0.00319)\\ (0.00319)\\ (0.00328)\\ (0.0038)\\ (0.0038)\\ (0.0038)\\ (0.0038)\\ (0.0038)\\ (0.0038)\\ (0.$
Table A5. Estimates with the full set of controls, full sample	CSA lags	$\begin{array}{l} \hat{\rho}_i\\ \hat{\rho}_i\\ \hat{\lambda}\\ \hat{\lambda}\\ \hat{\lambda}\\ \hat{\lambda}\\ \hat{\lambda}\\ \hat{\lambda}\\ \hat{\tau}\\ \hat$

CSA lags	No CSA	3	No CSA	3	No CSA	CSA	No CSA	3
$\begin{array}{c} OECD\\ \widehat{\rho_i}\\ \widehat{\rho_i}\\ \widehat{\rho_i}\\ \widehat{\lambda}\\ \widehat{\lambda}\\$	0.2079**** (0.0046) 0.0008 (0.0009) 0.0024 (0.0199) (0.0129) (0.0124) 464 [17] 0.00341 0.000	0.2083**** (0.0394) 0.0007 (0.0009) 0.0126 (0.0114) (0.0114) (0.0225) 413 [17] 0.0225 0.0778	$\begin{array}{c} 0.2118^{***}\\ (0.0068)\\ 0.0008\\ (0.0009)\\ 0.00027^{**}\\ (0.0013)\\ 0.0027^{**}\\ (0.0012)\\ 0.0027^{**}\\ (0.0149)\\ 464 \left[17 \right]\\ 0.00340\\ 0.000\end{array}$	0.2000**** (0.0516) 0.0003 0.0007) 0.0007) 0.0014*** (0.0007) 0.0014*** (0.007) 0.0014*** (0.007) 384[15] 0.00170 0.792	$\begin{array}{c} 0.1852^{****}\\ (0.0107)\\ 0.0006\\ (0.0008)\\ 0.0002^{*****}\\ (0.0008)\\ 0.0022^{*****}\\ (0.0047)\\ 0.0028\\ (0.0047)\\ 0.00246\\ (0.0075)\\ -0.7977^{****}\\ (0.0075)\\ -0.7977^{****}\\ (0.0075)\\ 1.85e-06\end{array}$	$\begin{array}{c} 0.2241^{****} \\ (0.0153) \\ 0.0007 \\ 0.0007 \\ 0.00171 \\ (0.0173) \\ 0.0101 \\ 0.0101 \\ 0.0011 \\ 0.0065 \\ 0.0066 \\ 0.0066 \\ 0.0065 \\ 0.0065 \\ 0.0065 \\ 0.0065 \\ 0.0065 \\ 0.0065 \\ 0.0065 \\ 0.0065 \\ 0.00027 \\ 151 \\ 161 \\ 0.00271 \\ 0.00271 \end{array}$	$\begin{array}{c} 0.2013^{****} \\ (0.0089) \\ 0.0009 \\ (0.0007) \\ 0.0024^{****} \\ (0.0013) \\ 0.00133 \\ 0.00142^{***} \\ (0.0074) \\ 0.0074 \\ 0.0074 \\ (0.0139) \\ -0.7963^{****} \\ (0.0073) \\ 0.0073 \\ 0.0023 \\ 0.0023 \\ 0.673 \end{array}$	$\begin{array}{c} 0.2013^{****}\\ (0.0089)\\ 0.0009\\ 0.0006)\\ (0.0006)\\ 0.0027^{****}\\ (0.0006)\\ 0.0170^{***}\\ (0.0075)\\ 0.00249\\ 0.01269\\ 0.01269\\ 0.01186)\\ 0.01186)\\ 0.001139\\ 0.0061]\\ 0.00139\\ 0.00139\end{array}$
Non-OECD $\widehat{ ho}_i$	0.2370*** (0.0128)	0.2017*** (0.0222)	0.2320*** (0.0173)	0.1729*** (0.0416)	0.2265*** (0.0122)	0.2069*** (0.0160)	0.2094*** (0.0229)	0.2051*** (0.0246)
								(continued)

129

Table A6. Estimates, OECD vs non-OECD. PMG

JES 51,9	3	-0.0004 (0.0012) 0.0012) (0.0012) 0.0008) 0.1532 (0.0008) 0.1532 0.1532 0.0008)	-0.70076*** (0.0859) 376 [14] 0.00549 0.492 0.492 0.492 cross-sectional te, respectively	
130	No CSA	0.0003 (0.0008) (0.0013 (0.0012) (0.0012) (0.0017) (0.2655) -0.0002 (0.0002)	-0.7606*** (0.0327) 1,079 [51] 0.00514 0.599 1. CSA refers to the 7th and inflation ra	
	CSA	0.0004 (0.0007) 0.0014* (0.0007) 0.0236 (0.2265) -0.0001 (0.0002)	-0.7742**** (0.0245) 384 [14] 0.00580 0.960 0.960 0.960 0.960 ce, population grow	
	No CSA	0.0007 (0.0006) 0.0014** (0.0006) -0.4484** (0.2273) 0.0001 (0.0001)	-0.0852**** (0.0174) 1,080 [51] 0.00685 0.0499 country-specific tr d. RMSE is the root ss index, labour for	
	3	0.0002 (0.0010) 0.0013** (0.0006) 0.0007 (0.0015)	-0.7663**** (0.0872) 707 [30] 0.00509 0.624 espectively. Linear st (CSD) are reporte per capita, opennes	
	No CSA	0.0004 (0.0006) 0.0016** (0.0007) 0.0015** (0.0006)	-0.7777**** (0.0267) 1.248 [56] 0.00735 0.061 1%, 5% and 10%, r onal dependence te sociated with GDP	
	3	0.0008 (0.0008) 0.0011 (0.0009)	-0.7479*** (0.0437) 1,029 [51] 0.00591 0.561 0.561 ote significance at es of the cross-secti es of the cross-secti ation	
	No CSA	0.0007 (0.0006) 0.0014 (0.0009)	-0.7756*** (0.0187) 1.248 [56] 0.00749 0.001111 erisks ***, **, * der de trors. The <i>p</i> -valu g and \widehat{n} are the long utthor's own elabor utthor's own elabor	
Table A6.	CSA lags	\mathfrak{A} \mathfrak{O} \mathfrak{X} \mathfrak{H}	$\hat{\xi}$ Obs. [N] RMSE CSD p -value Note(s): The ast report the standar averages. $\hat{\chi}$, \hat{q} , \hat{q} , Source(s): The i	

CSA lags	No CSA	3	No CSA	3	No CSA	CSA	No CSA	3
$\begin{array}{cccc} OECD\\ \phi & \phi & \phi \\ \end{array} & \begin{array}{cccc} \lambda & \lambda & \lambda \\ & \lambda & \lambda \\ \end{array} & \begin{array}{cccc} \lambda & \lambda & \lambda \\ & \lambda & \lambda \\ \end{array} & \begin{array}{ccccc} \lambda & \lambda & \lambda \\ & \lambda & \lambda \\ \end{array} & \begin{array}{cccccc} \lambda & \lambda & \lambda \\ & \lambda & \lambda \\ \end{array} & \begin{array}{ccccccccccccccccccccccccccccccccccc$	0.1996**** (0.0011) 0.0005 (0.0006) (0.0286) (0.0288)	0.2000**** (0.0012) 0.0006) -0.0058 (0.0207)	0.1996*** (0.001) 0.0005 (0.0007) 0.0017** (0.0007) 0.0017**	0.2000;*** (0.0012) 0.0006) 0.0008) (0.0008) 0.0019** (0.0008)	0.1996*** (0.0011) 0.0005 0.0006 0.0010 (0.0011) 0.00283 0.0262 0.0262 0.00283 0.0262 0.0000 0.0000 0.0000	$\begin{array}{c} 0.1999^{****}\\ (0.0011)\\ 0.0006\\ 0.0006\\ (0.0012)\\ (0.0012)\\ (0.00274)\\ 0.0126\\ (0.0000)\\ -0.0000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.000\\ 0.000\\ $	0.2000**** (0.0012) 0.0006) 0.0006) 0.0013) 0.0013) 0.0013) 0.0013) 0.0013) 0.0003) 0.0000) 0.0001] 0.0001] 0.0001] 0.0001]	0.1988**** (0.0011) 0.0009*** (0.0000) 0.0007) 0.0007 0.0007 0.0007 0.0007 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
چ Obs. [N] RMSE	-0.5004 (0.0011) 464 [17] 5.45e-10	-0.004 (0.0011) 430 [17] 5.20e-10	-0.5004 (0.0011) 464 [17] 4.88e-10	-0.00012 (0.0012) 3.46e-10	-0.0004 (0.0011) 430 [17] 4.61e-10	-0.0011 (0.0011) 415 [16] 4.24e-10	-0.00012 (0.0012) 384 [15] 3.63e-10	-0.6012 (0.0011) 276 [10] 3.57e-10
CSU p -value Non-OECD $\hat{ ho}_i$	0.910 0.2298^{***} (0.0166)	0.106 0.1943*** (0.0320)	0.00374 0.2267*** (0.0159)	0.934 0.2092*** (0.0164)	0.2017*** 0.2017*** (0.0014)	0.523 0.2011^{***} (0.0013)	cc.7.0 0.2013*** (0.0013)	0.090*** 0.1990*** 0.0018)
								(continuea)

131

Table A7. Estimates, OECD vs non-OECD. MG

JES 51,9	3	0.0001 (0.009) 0.0009 (0.008) 0.0022** (0.009) 4.3855 (3.1496) 0.002 0.002	(0.0002) -0.8010**** (0.0018) 329[12] 5.56e-10 0.667	quare brackets cross-sectional	
132	No CSA	0.0013*** (0.0006) 0.0013 (0.0011) 0.0028**** (0.0008) 1.4176 (1.2189) -0.0001	(0.0001) -0.7987**** (0.0013) 1.077 [51] 5.74e-10 0.0244	a the models. The s r. CSA refers to the respectively	
	CSA	0.0012* (0.0006) 0.0011**** (0.0002) (0.0002) 1.1463 (1.2385) -0.0001*	(0.0001) -0.7989*** (0.0013) 331 [12] 6.45e-10 0.547	ends are included i t mean squared erro e and inflation rate,	
	No CSA	0.0015** (0.0007) 0.0010*** (0.0001) (0.4639) 0.0000 0.0000	$\begin{array}{c} (0.000) \\ -0.7983 *** \\ (0.0014) \\ 1,080 [51] \\ 6.72 e \cdot 10 \\ 0.551 \end{array}$	r country-specific tr ed. RMSE is the root s index, labour force	
	3	0.0013** (0.0006) 0.0013** (0.0008) 0.0028***	-0.7987*** (0.0012) 708 [33] 6.23e-10 0.363	respectively. Linea est (CSD) are reporte per capita, openness	
	No CSA	0.0011 (0.0007 0.0016** (0.0007 0.0026**** (0.0009)	-0.7990*** (0.0014) 1,136 [56] 7.19e-10 0.0296	1%, 5% and 10%, tional dependence to sociated with GDP _I	
	3	0.0003 (0.0007) 0.0011 (0.0009)	-0.7542^{***} (0.0579) 1,029[51] 0.00591 0.561	mote significance at lues of the cross-sect run coefficients ass ration	
	No CSA	0.0005 (0.0006) 0.0014 (0.0009)	-0.7828*** (0.0262) 1,248 [56] 0.00749 0.00111	terisks ***, **, * \mathfrak{de} urd errors. The p -val and $\widehat{\pi}$ are the long- author's own elabo	
Table A7.	CSA lags	$oldsymbol{\mathfrak{A}}$ $oldsymbol{ abla}$ $oldsymbol{eta}$ $oldsymbol{ abla}$ $oldsymbol{eta}$ $oldsymbol{eta}$ $oldsymbol{eta}$	ξ Obs.[N] RMSE CSD <i>p</i> -value	Note(s): The as report the standa averages. $\hat{\chi}, \hat{\tau}, \hat{\Phi}$, Source(s): The	

lags	No CSA	0	Model A 1	2	n	No CSA	0 W	odel B 1	2	°0
	0.2244*** (0.0370) 0.0002 (0.0008) 0.0005 (0.0008)	0.2228**** (0.0411) -0.0011 (0.0013) 0.0011 (0.0010)	0.1897**** (0.0170) 0.0008 (0.0008) 0.0018 (0.0011)	0.1729*** (0.0232) 0.0011 (0.0010) 0.0014 (0.0009)	0.1595*** (0.0338) 0.0010 (0.009) 0.0014 (0.0009)	0.1911**** (0.0173) 0.0012**** (0.0002) 0.0014 (0.0011) 0.0023**	0.1896*** (0.0197) (0.0011*** (0.001) (0.0013) (0.0013) (0.0019) (0.0029***	0.1540**** (0.0388) 0.0014**** (0.0002) 0.0026**** 0.0008) 0.0041****	0.0953 (0.0757) 0.0010**** (0.002) 0.0031*** 0.0031****	
alue	-0.7409*** (0.0633) 726 [48] 0.00462 5.84e-05	-0.7159**** (0.0983) 712 [46] 0.00464 0.421	-0.7858*** (0.0209) 589 [37] 0.00348 0.168	-0.8080^{***} (0.0195) 424 [23] 0.00344 0.191	-0.7953*** (0.0437) 381 [21] 0.00320 0.301	-0.7866*** -0.7866*** (0.0234) 712 [46] 0.00381 0.126	$\begin{array}{c} -0.7204 \\ -0.7904 \\ (0.0106) \\ 468 \\ 24 \\ 0.00322 \\ 0.726 \end{array}$	-0.010) -0.8143*** (0.0319) 398 [20] 0.00302 0.737	-0.8427*** -0.8427*** (0.0218) 298 [14] 0.00197 0.274	
	0.2367*** (0.0140) 0.0008 (0.0006) 0.0009* (0.0005)	0.2366**** (0.0164) 0.0007 (0.0005) 0.0007 (0.0006)	0.2080**** (0.0169) 0.0008 (0.0006 (0.0006 (0.0005)		11111111	0.2392*** 0.00144) 0.0007 0.0006) 0.0024*** 0.0007 0.0017***	0.2220*** (0.0189) (0.005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005)			
ılue	-0.7972*** (0.0222) 876 [73] 0.00698 0.000718	-0.7872**** (0.0167) 876 [73] 0.00582 0.0893	-0.8038*** (0.0295) 803 [73] 0.00530 0.781	1 1 1 1 1	1 1 1 1 1	-0.7914*** (0.0218) 876 [73] 0.00684 0.0318	-0.7936*** (0.0233) 864 [72] 0.00564 0.118	1 1 1 1 1	1 1 1 1 1	
: The a le stanc le stanc $\hat{\chi}$ is th (s): Th	Isterisks ***, **, lard errors. The l he long-run coeff e author's own e	* denote signific <i>b</i> -values of the cro ficient associated elaboration	ance at 1%, 5% i sss-sectional dep with GDP per ca	and 10%, respec endence test (CS apita	tively. Linear co D) are reported. R	untry-specific tre MSE is the root	ends are included mean squared er	l in the models. T ror. CSA refers to	he square brack the cross-sectio	ets nal
Table A8.								133	adjustments and TFP dynamics	Fiscal

JES	°0	I		1 1		Ι			I	I	I	Ι	I	Ι	Ι	I		I	Ι	I	I	Ι	tional	
01,0	5	0.2008***	(0.0013) 0.0011	(0.0006) 0.0019***	(0.0007) 0.0025**	(0.008)	-0.7992*** 0.0013\	(0.001) 298 [14]	7.61e-10	007.0	I	I	I	Ι	I	I		Ι	I	Ι	Ι	Ι	The square brain the cross-sec	
134	odel B 1	0.2018***	(0.0012) 0.0015**	(0.0006) 0.0017^{***}	(0.0006) 0.0031***	(0.008)	-0./982***	398 [20]	4.63e-10	001.0	I	I	I	Ι	I	I		I	I	Ι	Ι	Ι	in the models. T or. CSA refers to	
	0 M	0.2003***	(0.0011) 0.0008	(0.0006) 0.0012	0.007) (0.007) (0.007)	(0.0007)	-0./99/***	468 [24]	4.95e-10	001.0	0.2007^{***}	(0.0011)	0.0010*	(0.0006)	0.0029***	0.0010) 0.0025***	0.0007	-0.7993***	(0.0011)	862 [72]	6.57e-10	0.995	nds are included nean squared en	
	No CSA	0.1996***	(0.0010) 0.0004	(0.0005) 0.0017^{***}	(0.0005) 0.0017***	(0.006)	-0.8004^{***}	712 [46]	4.95e-10	Tetu.	0.2007^{***}	(0.0011)	0.0010^{*}	(0.0005)	0.0027***	(0.008)	10,0007	-0.7993^{***}	(0.0011)	872 [73]	7.27e-10	0.480	Intry-specific tre MSE is the root 1	
	c.	0.2008***	(0.0011) 0.0011*	(0.0005) 0.0008	(6000.0)		-0.7992^{***}	381 [21]	5.10e-10	0607.0	I	Ι	I	Ι	I	I		I	I	I	Ι	I	tively. Linear cou)) are reported. R	
	5	0.2000***	(0.0011) 0.0006	(0.0006) 0.0017^{***}	(0.006)		-0.8000***	424 [23]	5.04e-10	0.1402	I	I	I	Ι	I	I		I	I	I	I	I	and 10%, respect endence test (CSI	the second se
	Model A 1	0.1996***	(0.0010) 0.0004	(0.0005) 0.0017***	(0.0005)		-0.8004^{***}	(0.0010) 589 [37]	5.03e-10	7100.0	0.2007^{***}	(0.0011)	0.0010*	(0.0005)	0.0004	(0.0004)		-0.7993^{***}	(0.0011)	803 [73]	5.86e-10	0.731	ance at 1%, 5% a ss-sectional depe	
	0	0.1988***	(0.0012) 0.0000	(0.0006) 0.0024^{***}	(0.0006)		-0.8012***	712 [46]	5.17e-10	00000	0.2006^{***}	(0.0011)	0.0009*	(0.0006)	0.0010**	(c000.0)		-0.7994^{***}	(0.0011)	876 [73]	6.49e-10	0.120	* denote signification - values of the cro	and a second sec
	No CSA	0.1996***	(0.0009) 0.0004	(0.0004) 0.0025***	(00000)		0.0000 10.00000	726 [48]	5.41e-10	00000	0.2007^{***}	(0.0011)	0.0010*	(0.0005)	0.0011^{**}	(cn00.0)		-0.7993^{***}	(0.0011)	876 [73]	7.63e-10	0.0624	sterisks ***, **, ard errors. The p	
Table A9. Estimates, pre and post 2007, MG	CSA lags	<2008 $\hat{ ho}_i$	$\widehat{\theta}_{:}$, (c	र (२	× (us.	Obs. [N]	RMSE	anine-y uco	≥2008 û:		$\widehat{m{eta}}_{:}$		(7	(:	×	(म्	Դ	Obs.[N]	RMSE	CSD p-value	Note(s): The as report the stand	attomation and the

က	$\begin{array}{c} 0.1897 *** \\ 0.0230 \\ 0.0006 \\ (0.0030) \\ 0.0017 * \\ (0.0008) \\ 0.0017 * \\ (0.0009) \\ -0.7904 *** \\ (0.0448) \\ 326 [14] \\ 0.00340 \\ 0.159 \end{array}$		Fiscal adjustments and TFP dynamics
2	0.1932**** (0.0212) 0.0004 (0.0008) 0.0027**** 0.0019 (0.0012) -0.7898**** (0.0193) 438 [20] 0.00355 0.00355 0.00355 0.00355		135
Model B 1	0.2052*** (0.0146) -0.002 (0.0119) 0.0025*** (0.0007) 0.0025*** (0.0009) -0.7463**** (0.0453) 516[24] 0.00458 0.000458		
0	0.1942**** (0.0199) 0.0055 (0.0015 0.0015 (0.0011) 0.0027***** (0.009) 0.7668***** (0.0293) 821 [45] 0.00506 0.116		
No CSA	0.2217*** (0.0155) 0.0015 0.0005 0.0011 0.0011 (0.0012) -0.7499*** 0.0011 0.0028 969[59] 0.00604 0.00604 2.176-06	0.2007**** (0.0011) 0.0010* (0.0005) 0.0005 0.0005 0.0005 0.0016**** (0.0011) 648 [73] 5.06e-10 0.488 aar cuntry-spe	
က	$\begin{array}{c} 0.2190^{***}\\ (0.0686)\\ -0.0065\\ (0.0011)\\ -0.0002\\ (0.0015)\\ (0.0015)\\ (0.1351)\\ 494 [25]\\ 0.00523\\ 0.417\\ 0.117\\ \end{array}$	- - - - - - sepectively. Lind	
2	$\begin{array}{c} 0.2214^{****}\\ (0.0464)\\ -0.0006\\ (0.008)\\ 0.0008\\ (0.0010)\\ (0.0010)\\ (0.0793)\\ 718[42]\\ 0.0793)\\ 718[42]\\ 0.0500\end{array}$	- - - - - 5% and 10%, re dependence tes er capita	
Model A 1	0.2098**** (0.0214) 0.0004 (0.0007) 0.0014 (0.0009) 0.0146] 0.0495 0.00495 0.00495 0.00495	- - - - - - - fificance at 1%, ted with GDP p	
0	$\begin{array}{c} 0.2084^{****}\\ (0.0140)\\ 0.0013\\ (0.0006)\\ 0.0013^{*}\\ (0.0007)\\ (0.00252)\\ 969 [59]\\ 0.00249\\ 0.0234\end{array}$	- - - - - - - - - - - - - - - - - - -	
No CSA	$\begin{array}{c} 0.2101 *** \\ (0.0122) \\ 0.0006 \\ (0.0005) \\ 0.0019 *** \\ (0.0006) \\ (0.0182) \\ 1.028 [67] \\ 0.00627 \\ 0.006 \end{array}$	0.2265**** (0.0170) 0.0008 (0.0005) (0.0006) (0.0006) (0.0027 (1.33e-10) 657 [73] 0.00551 1.33e-10 (0.0271) 657 [73] 0.00551 1.33e-t0 asterisks ****, * asterisks ****, * the long-run coe	
CSA lags	$\begin{array}{c} < 2011 \\ \widehat{\rho_i} \\ \widehat{\rho_i} \\ \widehat{\rho_i} \\ \widehat{\lambda} \\ \widehat$	$\begin{array}{l} \widehat{\rho}_i\\ \widehat{\rho}_i\\ \widehat{\rho}_i\\ \widehat{\lambda}\\ \widehat{\lambda}\\$	Table A10. Estimates, pre and post 2011. PMG

JES 51,9	3	0.2003**** (0.0011) 0.0008 (0.0005) 0.0022**** (0.0007) 0.0021****	(0.0011) (0.0011) 326 [14] 5.25e-10 0.683	I				I	1 1	I		re brackets ss-sectional
136	2	0.1998*** (0.0011) 0.0005 (0.0005) (0.0005) (0.0006) (0.0008***	(0.0011) -0.8002*** (0.0011) 438 [20] 5.12e-10 0.501	I				I	1 1	I	1 1	odels. The squa refers to the cro
	Model B 1	0.1989*** (0.0011) 0.0006) 0.0012* (0.0007) 0.0012* 0.0013*	$(0.001) \\ -0.8011 \\ (0.0011) \\ 516 [24] \\ 5.84e \cdot 10 \\ 0.459 \\ 0.459 \\ 0.459 \\ 0.459 \\ 0.450$	I	1 1	1 1		I	1 1	I	1 1	ncluded in the m ared error. CSA
	0	0.2008*** (0.009) (0.0005) (0.0005) (0.0025***	(0.0009) (0.0009) 821 [45] 6.29e-10 0.0121	I				I	1 1	I	1 1	ific trends are in e root mean squ
	No CSA	0.2007**** (0.0010) 0.0010*** (0.0005) 0.0024**** (0.0006)	(0.0000) (0.0010) 969 [59] 6.89e-10 0.000607	0.1677***	(0.0327) 0.0003	(0.0012) 0.0024^{***}	(0.0007) 0.0024***	(0.0007)	-0.8382^{***}	648 [73]	76700.0	ar country-spec ted. RMSE is th
	3	0.1933*** 0.0037) 0.0005 0.0011 0.0011 (0.0007)	-0.8034*** (0.0057) 494 [25] 5.78e-10 0.598	I	1 1	1 1		I	1 1	I	1 1	spectively. Line (CSD) are repor
	2	0.2201**** (0.0150) 0.0004 (0.0005) 0.0018**** (0.0005)	-0.6613*** (0.1326) 718 [42] 5.87e-10 0.105	I	1 1	1 1		I	1 1	I	1 1	5% and 10%, re dependence test er capita
	Model A 1	0.2007**** (0.0009) 0.0005) 0.0005) 0.0024**** (0.0006)	0.7993*** (0.0009) 804 [46] 6.05e-10 0.120	I	1 1	1 1		I	1 1	I	1 1	ficance at 1%, 5 cross-sectional (ed with GDP pe
	0	0.2007**** (0.0010) 0.0007* (0.0004) 0.0024**** (0.0006)	-0.7993*** (0.0010) 969 [59] 6.65e-10 0.444	I				I	1 1	I		, * denote signif <i>p</i> -values of the ficient associat elaboration
	No CSA	0.2016*** (0.0010) 0.0010** (0.0005) 0.0030***	-0.7984*** (0.0010) 1,028 [67] 7.08e-10 0.112	0.2007***	(0.0010*)	(0.0005) 0.0017*	(6000.0)		-0.7993^{***}	657 [73]	0.938 0.938	laterisks ***, ** lard errors. The he long-run coef e author's own
Table A11. Estimates, pre and post 2011. MG	CSA lags	$egin{array}{c} < 2011 \ \widehat{ ho}_{i} \ \widehat{ ho}_{i} \ \widehat{ ho}_{i} \ \widehat{\lambda} \$	ξ Obs. [N] RMSE CSD <i>p</i> -value	≥ 2011 $\hat{ ho}_i$	$\widehat{m{eta}}_{:}$	å (r	ৎ (১	۲	(us	Obs. [N]	CSD p-value	Note(s): The a report the stanc averages $\hat{\chi}$ is the source(s): The stance averages $\hat{\chi}$ is the source set of the stance set of the s