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Abstract

Purpose – This paper tests whether Bayesian A/B testing yields better decisions that traditional Neyman-
Pearson hypothesis testing. It proposes a model and tests it using a large, multiyear Google Analytics (GA)
dataset.
Design/methodology/approach – This paper is an empirical study. Competing A/B testing models were
used to analyze a large,multiyear dataset of GAdataset for a firm that relies entirely on theirwebsite and online
transactions for customer engagement and sales.
Findings – Bayesian A/B tests of the data not only yielded a clear delineation of the timing and impact of the
intellectual property fraud, but calculated the loss of sales dollars, traffic and time on the firm’s website, with
precise confidence limits. Frequentist A/B testing identified fraud in bounce rate at 5% significance, and bounces
at 10% significance, but was unable to ascertain fraud at the standard significance cutoffs for scientific studies.
Research limitations/implications – None within the scope of the research plan.
Practical implications –BayesianA/B tests of the data not only yielded a clear delineation of the timing and
impact of the IP fraud, but calculated the loss of sales dollars, traffic and time on the firm’s website, with precise
confidence limits.
Social implications – Bayesian A/B testing can derive economically meaningful statistics, whereas
frequentist A/B testing only provide p-value’s whose meaning may be hard to grasp, and where misuse is
widespread and has been a major topic in metascience. While misuse of p-values in scholarly articles may
simply be grist for academic debate, the uncertainty surrounding the meaning of p-values in business analytics
actually can cost firms money.
Originality/value – There is very little empirical research in e-commerce that uses Bayesian A/B testing.
Almost all corporate testing is done via frequentist Neyman-Pearson methods.
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1. Introduction
Fraud, in all of its variety, is one of the major concerns in electronic commerce. Electronic
commerce obviates various “middle-men” in retailing – e.g. cashiers, salespersons, security
guards and so forth. Advantages of highly efficient transaction processing un-monitored by
humans, opens numerous pathways to commit fraud. As a consequence, electronic commerce
continually seeks data analytical approaches to replacing the security provided by humans,
while retaining the efficiency and cost advantages of digital platforms. A/B testing can
provide one such analytical approach to fraud detection. Numerous tools are available in a
highly competitive and expanding market, including tools by VWO Corporation, Optimizely,
Convert Experiences, SiteSpect, ABTasty, Evolv, Google Optimize, Qubit, Adobe Target and
others. Current software generally takes a frequentist approach.
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Auditors define control systems over fraud in three categories: preventive, detective and
corrective (Westland, 2020a). Preventive controls prevent a fraud from happening, and are
typically passive in nature. Detective controls detect that a transaction or group of
transactions has a higher probability of fraud, and should be investigated. Corrective controls
recognize that error correction is highly error prone, and control over corrections is necessary
for most systems (Pumsirirat & Liu, 2018; Al-Shabi, 2019; Westland, 2000; Westland, 2002,
2004, 2017, 2020a). A/B tests provide a corrective control over groups of transactions, and
their control implementations are similar to that of autoencoders, Benford tests, Sarbanes-
Oxley tests and other detective control implementations (Westland, 2019, 2020b). In turn, the
operations for fraud detection are generally the responsibility of internal audit and technical
security staff in e-commerce operations. Auditors’ responsibility is not the complete
elimination of fraud; rather their main goal is reducing the cost of fraud to acceptable levels.
The trade-offs in this activity are assessed in terms of the cost of fraud detection and control
vs the savings from frauds that have been prevented or recovered from; in other words, the
expected net savings from fraud prevention.

The search for improved tools for fraud detection is of immense importance to e-commerce
firms today. Fraud has been steadily on the rise as more and more commerce transactions
have migrated to digital platforms. Rice, Weber, and Wu (2014), Ashbaugh-Skaife, Collins,
Kinney, and LaFond (2008), Ge, Koester, and McVay (2016), Bedard and Graham (2011) and
Bedard, Hoitash, and Hoitash (2009) have provided compelling evidence that firmswith weak
internal controls suffer increased numbers of frauds. Recent information e-commerce fraud
have grown costlier and more frequent; for example Home Depot’s 2015 breach has cost it
$232m so far an amount that they expect to reach billions. A 2015 breach of Ashley Madison
stole 40m accounts including photos details of sexual proclivities and personal addresses
Target’s 2013 breach affected the accounts of 70m customers and so far has cost the firm
$162m in added expense. A 2018 breach of Marriott hotels exposed private information of
~500m customers; a 2019 breach of Capital One exposed financial information of ~100m
credit applicants; and a 2017 breach at Equifax exposed financial information of 143m
customers. In 2014 A Guardians of Peace breach of Sony Pictures stole over 100 terabytes of
confidential data. 2014 also saw the theft of 360m MySpace accounts a LinkedIn hack that
took more than 100m accounts a 500-million-accounts, a hack of Yahoo, theft of 340m
AdultFriendFinder accounts, their second hack in a year and numerous other breaches. Both
frequency and scale of breaches have grown dramatically in the recent past.

This research conducts an empirical study using a large, multiyear dataset of Google
Analytics (GA) data for a particular firm’s website during a particular period of time, and
whichwas compromised by other fraudulent websites that appropriated the firms’ brand and
e-commerce transactions for a portion of that time. Assessments of “fraud” and “no-fraud” are
obtained through applications of the firm’s actual loss function and the calculation of loss
under competing decisions from a frequentist and Bayesian A/B test decision based on the
empirical data. The approach is tested on six years of GA e-commerce data obtained from a
major service organization that relies entirely on their website and online transactions for
customer engagement and sales.

To this date, A/B testing has not been a standard tool for fraud detection, though its
implementation is similar enough to other methods that A/B testing can be used to detect,
prevent and recover from fraud in the same way as we have already used autoencoders
(Pumsirirat & Liu, 2018; Al-Shabi, 2019; Westland, 2019, 2020b) and generalist algorithms
such as the Fraud Aware Impression Regulation system (Li et al., 2019). The current research
analyzes and statistically tests a large database using Bayesian vs frequentist approaches to
A/B tests for fraud detection. Thus the research serves as an empirical demonstration that A/
B testing is effective as a fraud detection methodology, and in addition tests the effectiveness
of Bayesian vs frequentist approaches to fraud detection. We used six years of GA data for a
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website during two time periods: one inwhich a fraudulentwebsite was fraudulently drawing
off andmisleading customers and another periodwhere this fraudwas not being perpetrated.
This allowed us to label particular sets of transactions as fraudulent.

The presentation in this research paper proceeds as follows. Section 2 reviews the prior
literature in fraud research. Section 3 introduces the research dataset, its curation and
analysis. Section 4 reviews themathematics of A/B testingmethodologies; Section 5 conducts
the analysis and reviews the results. Section 6 draws conclusions and offers a brief
discussion. Section 7 looks at potential application so of the results and their managerial
implications. Finally, Section 8 suggests limitations and future research.

2. Prior research in electronic commerce fraud detection
Fraud detection may either be supervised or unsupervised – i.e. requiring datasets that are at
least partly labeled, versus being completely unlabeled. Supervised methods generate a
predictive probability that a new case, or a set of cases, is fraudulent. Classification methods
(Hand & Henley, 1997; Jha, Guillen, & Westland, 2012; Ahfock, McLachlan, Yang, & Zhu,
2022; Jha &Westland, 2013) such as linear discriminant analysis and logistic discrimination,
have proved to be effective tools for many applications, but more powerful tools (Ripley &
Ripley, 2001; Bolton & Hand, 2001; Bolton & Hand, 2002; Webb, Campbell, Schwartz, &
Sechrest, 1999) such as neural networks are being applied. Rule-based methods, though
dated, are still being applied. These are supervised “IF-THEN-ELSE” learning algorithms
that produce classifiers. Examples of such algorithms include the BAYES implementation of
the CN2 induction algorithm (Clark&Niblett, 1989), the FOIL implementation of decision tree
algorithms (Quinlan, 1990) and the RIPPER evolution of IREP and C4. 5 machine learning
rules (Cohen, 1995). Tree-based algorithms such as CART: Classification And Regression
Trees (Breiman, Friedman, Olshen, & Stone, 1984) produce classifiers of a similar form.
Combinations of some or all of these algorithms can be created using meta-learning
algorithms to improve prediction in fraud detection (Chan, Fan, Prodromidis, & Stolfo, 1999).

Some work has addressed misclassification of training samples (e.g. Chhikara &McKeon,
1984) but not in the context of fraud detection. Social acquaintance analysis relating known
fraudsters to other individuals using record linkage and social network methods has been
proposed for some time (Wasserman & Faust, 1994) but only recently have graph analytic
tools become available to really make use of this method (e.g. see Pourhabibi, Ong, Kam, &
Boo, 2020; Hooi et al., 2016; Zhang et al., 2022; Cheng, Wang, Zhang, & Zhang, 2020).

Unsupervised methods are used when there are no prior sets of legitimate and fraudulent
observations. Techniques employed here are usually a combination of profiling and outlier
detection methods. Benford’s law (Berger & Hill, 2011; Hill, 1995) is popularly used since it is
first proposal as a fraud detection tool by Hal Varian, and is a common test in the U.S.
Securities and Exchange Commision’s audits of corporations to find fraud in transaction
streams (Westland, 2020a).

Fraudsters adapt to new prevention and detection measures, and various methods have
been proposed to help fraud detection be more adaptive and evolve over time (e.g. see Cortes,
Pregibon, & Volinsky, 2001; Senator, 2000).

There is a rich literature in hardware, software and administrative systems for fraud
control. Though less flexible than data analytic methods, such methods can prevent
fraud before it occurs, and thus lower the economic cost of surveillance. E-commerce fraud
manifests in several forms, with credit card fraud being most prevalent and having the
largest economic impact. Research has investigated credit card fraud detection using a
behavior certificate (BC) (Zheng et al., 2018) to determine the legality of transactions based on
historical records of the cardholder. Fraud detection has also used disposable domain names
that can detect fraud based on IP masking (Laurens, Rezaeighaleh, Zou, & Jusak, 2019) and
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detection of fraudulent transactions using a prudential multiple consensus (PMC) models
(Carta, Fenu, Recupero, & Saia, 2019). Research has explored the use of blockchains to
prevent fraud through implementation of cryptocurrency in payments and smart contracts
(Savita & Datta, 2015) and through various antifraud systems to detect e-commerce frauds
(Xie et al., 2018). Various research studies have investigated security in data transactions,
passwords, networks, images and trading in e-commerce, finding that fraud can be prevented
or ameliorated by using RSA (Rivest–Shamir–Adleman) encryption and Fernet cipher
algorithms (Dijesh, Babu, & Vijayalakshmi, 2020). Other studies suggest how risks in
e-commerce can be detected quickly and accurately without disrupting system performance
(Xu& Chu, 2017), by using a security service oriented architecture (SOA) framework that can
protect e-commerce from attacks or threats (Suryono, Purwandari, & Budi, 2019) and using a
unified framework to analyze the security data in e-commerce. Other studies have looked at
security of one-time password (OTP) using ECC (elliptic curve cryptography) with palm vein
biometrics to OTP (Dzulfikar, Sensuse, & Noprisson, 2017). It has been suggested that an
e-commerce trusted trading framework (ETTF) using blockchain can improve security in
e-commerce (Luhach, Dwivedi, & Jha, 2014) and two-way authentication based on visual
cryptography and steganography can further protect e-commerce from fraud (Ismanto, Ar,
Fajar, Bachtiar, & others, 2019). Research has also studied graphical passwords for
e-commerce applications that can improve the security and usability of customers (Qiu & Li,
2017). Mahto and Yadav (2015) proposed a unified framework for securing image data stored
in third-party clouds and Sharma, Mathur, and Srivastava (2018) proposed a system that
combines text-based steganography, visual cryptography and OTP can avoid identity theft
and customer data privacy. All of these systems, though, required substantial upfront
investments in hardware, software and administrative systems before they can be effective.
They are also difficult to modify or improve based on experience – if they turn out to be
ineffective or are hacked; their fraud control value is often substantially reduced.

Bedard et al. (2009), Hoitash, Hoitash, and Bedard (2009) and Bedard and Graham (2011)
examined detection and severity classification of internal control deficiencies, finding that
external auditors, during their Section 404 audit, detect about three-fourths of unremediated
internal control deficiencies. Ge et al. (2016) looked at a sample of 261 companies that
disclosed at least one material weakness in internal control in their Sarbanes-Oxley (SOX)
filings, finding that poor internal control is usually related to an insufficient commitment of
resources for accounting controls, with the most common account specific material
weaknesses occurring in accounts receivable and inventory. SOX 302 disclosures, in contrast,
tended to describe internal control problems in complex accounts such as the derivative and
income tax accounts. They found that disclosing amaterial weakness is positively associated
with business complexity, e.g. multiple segments, and foreign currency negatively associated
with firm size, e.g. market capitalization, and negatively associated with firm profitability
metrics, e.g. return on assets. Lin, Pizzini, Vargus, and Bardhan (2011) investigated the role
that a firm’s internal audit function plays in the disclosure of material weaknesses reported
under SOX 404, using data from 214 firms. They found that material weakness disclosures
are negatively correlated with the education level of the internal auditors and positively
correlated with the practice of grading audit engagements and external-internal auditor
coordination. Ashbaugh-Skaife et al. (2008) reported that SOX disclosed internal control
deficiencies were associated with more complex operations, recent organizational changes,
greater accounting risk, more auditor resignations and have fewer resources available for
internal control. They also found that firms with SOX disclosed internal control deficiencies
hadmore prior SEC enforcement actions and financial restatements, weremore likely to use a
single dominant audit firm and had more concentrated institutional ownership. Feng,
Li, McVay, and Skaife (2014), Feng, Li, and McVay (2009) and Berger, Li, and Wong (2005)
found that internal control deficiencies were correlated with less accurate guidance. In
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particular the impact of ineffective internal controls on forecast accuracy was found to be
three times larger when the weakness was related to revenues or cost of goods sold. This
finding reflects the importance of revenues and cost of goods sold in forecasting earnings.
Ashbaugh-Skaife et al. (2008) found that firms that report internal control deficiencies have
lower quality accruals, as measured by accrual noise and absolute abnormal accruals, when
compared to firms not reporting internal control problems. Additionally, firms whose
auditors confirm remediation of previously reported internal control deficiencies exhibit an
increase in accrual quality relative to firms that do not remediate their control problems. They
further found that material weaknesses are correlated with: (1) noise, (2) with accrual noise
higher error term variance and (3) with intentional misstatements that bias earnings upward.

3. Dataset, curation and analysis
Acquisition of data for the analysis in this report started with the firm’s financials, from the
inception of the company in 2016, up to March 18, 2021. Sales and operations data were
obtained from the firm’s financial statements, and internal accounting datasets for monthly
and daily sales. Website statistics were obtained through GA application programming
interfaces (API) for all available data between the firm’s inception in 2016 andMarch 18, 2021.
This included the period that the fraudulent sites and UniformResource Locators (URL) were
in operation, between April 7, 2018 and May 13 2020 (this period covered 767 days or
25.56 months), as well as “control” periods before and after that period which were used to
determine the firm’s baseline operations and web statistics. The complete dataset was
extracted fromGAAPIs over a period of three weeks (allowing for throttling) and tracked the
complete web history for the website between “2016-09-08” and “2021-03-18”. Figure 1
delineates the steps involved in obtaining, aggregating and analyzing the dataset. I have
abbreviated for brevity in Figure 1, but not that “GA” in the figure means GA; optical
character recognition (OCR); API; and time series (TS). These activities yielded a total of
7,238,819 useable records have the “curation-cleanup” step.

The specific interpretation and methodological choices in my curation, analysis and
calculation involving the firm’s financial data have been motivated by:

(1) a choice of themost objective and least subjective methodology that will insulate data
and analysis from investigator bias, while providing objective, verifiable and
replicable conclusions;

(2) the elimination of effects due to confounding and unobserved variables; and

(3) the choice of the most appropriate methods and prior assumptions that would allow
the firm’s financial data and the analysis based upon that data, to speak for itself
without imposing any investigator bias.

Any comparison of operations between two time periods needs to first remove inflation,
seasonality and organic business growth in order to isolate cogent effects. The deflated
values are stated in 2016 dollars. Restatement in the period from 2016-2021 dollars used
the deflators and reinflators calculated in the technical appendices. Failure to detrend data
would have added spurious effects. The current analysis deseasonalized and detrended
data to remove extraneous influences of inflation, seasonality and organic growth in the
firm’s business. I controlled for unobserved covariant predictors, where this was
necessary, through mixed-effects models. Interpolations were used where needed, using
industry best-practice cross-sectional and TS methods. Firm’s business model was neither
particularly complex, nor were their operations and revenue flows particularly volatile. In
my opinion, the interpolations applied to compute missing data points provided accurate
estimates.
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A model of future sales using GA predictors was constructed and optimized around an
ordinary least squares (OLS) regression model. The model used only detrended TS, as in
particular time-series autocorrelations would have inflated the variation in sales explained by
GA predictors to anR25 90%, whereas the true variation explained by only GA predictors is
R25 60%. Detrending and deseasonalizing data provided conservative (i.e. tending towards
underreporting the loss of sales due to the actions of fraudulent sites) estimates of loss. The
OLS regressionmodel used in this analysis assumed normal residuals. A complete analysis of
empirical residuals validated this assumption and provided the justification for the use of a
normal inverse gamma prior in the A/B analysis.

The data analysis revealed causation between the firm’s sales and web traffic, as
measured in their GA statistics, and the existence of fraudulent websites and URLs.
Furthermore, causation of the firm’s sales decline due to the negative impact of fraudulent
sites and URLs on the firm’s web traffic is strongly supported by the time sequence of events
(Granger, 1969). After the initiation of fraudulent websites and URLs, the firm’s business
sales, website visits and time on website declined significantly. I tested the results of the OLS
regression model of sales using GA predictors to determine whether the regression
coefficients represented causality or correlation. I used a Granger causality test - the industry
best-practices statistical hypothesis test for ascertaining causal effects in economic studies.
The Granger causality test determines whether one TS is useful in forecasting another.
Causality in economics can be tested for by measuring the ability to predict the future values
of TS using prior values of another TS. In this study, TS of GA predictors was shown to

Figure 1.
Workflow schematic of
analysis in this
research
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Granger-cause (Granger, 1969) A TS of sales by applying a series of t-tests and F-tests on
lagged values of GA predictors, with lagged values of sales also included, to show that those
GA values provide statistically significant information about future values of sales.

Frequentist and BayesianA/B testing assumed a normal distribution of data. It assumed a
diffuse, noninformative prior, a normal inverse gamma – Normal conjugate family and
computed loss as the difference of posterior means, assessing loss estimates on 95% credible
intervals. Bayesian A/B test results were highly significant, and all needed methodologies to
control potential estimation biases and confounding effects were applied to maintain strict
control over the results. The negative impact of fraudulent websites during the period of their
existence, on the firm’s sales is captured in their negative impact in the recorded GA site
metrics for the firm website. Bayesian A/B testing of the sales data during the period when
the fraudulent sites existed, versus the other periods when there were no fraudulent sites
operating shows that during the time the fraudulent sites were active. The specific
factorsanalyzed are defined in Tables 1 and 2 estimates the impact of these factors on the
firm’s economic performance using regression analysis. The firm’s website is the major
source of sales revenue. I built a regression model to predict firm sales from their GA
statistics, which explains around 60% (R2 5 58.03%) of the variance in sales, the remaining
variance arising from other nonwebsite influences.

Interpolations were used to complete the dataset, using industry best-practice cross-
sectional and time-series methods. The firm’s business model was neither particularly

GA factor and distribution Description

Modeled with Inverse Gamma-Normal conjugate family
SessionDuration (normal) Time user spent on firm site
sessionsPerUser (normal) Number of times a particular user visited the firm’s site
daysSinceLastSession (normal) Days since a user last visited firm
avgTimeOnPage (normal) Average of time user spends on a page
pageviewsPerSession (normal) Number of page views inside the firm’s site for each session
uniquePageviews (normal) New page views

Modeled with Beta-Binomial Conjugate family
entranceRate (beta) Entrances and entrance rate (clicks to landing page)
bounceRate (beta) Bounces and bounce rate (left after landing page)
percentNewSessions (beta) New sessions (new users)
exitRate (beta) Exits

GA.Metric Unit.Cntr Std.error t.stat p.value B.A.mean CI.5 CI.95

(Intercept) �$38,732.09 42071.22 �0.92 0.36 NA NA NA
new_vis $84.44 36.82 2.29 0.03 2472 �4.48 �0.81
users �$1.71 0.45 �3.80 0.00 �61415 �8.81 6.24
bounces �$33.99 10.74 �3.17 0.00 1581 �5.58 3.62
bounceRate �$2.16 0.70 �3.09 0.00 184973 �4.20 �0.87
sessionDuration �$0.52 0.26 �2.02 0.05 1982081 �7.64 5.09
avgSessionDuration $0.48 0.26 1.84 0.07 2023928 �7.66 5.17
uniqueDimensionCombinations $43.70 11.85 3.69 0.00 159 �5.96 3.83
entranceRate �$0.30 0.19 �1.60 0.12 �113215 �8.19 5.19
timeOnPage �$0.33 0.12 �2.86 0.01 57039 �9.80 7.37
avgTimeOnPage $0.79 0.16 4.92 0.00 104429 �9.16 7.00

Table 1.
Google analytics

factors for Bayesian A/
B tests

Table 2.
Regression estimates
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complex, nor were their operations and revenue flows particularly volatile. In my opinion, the
interpolations applied to compute missing data points provided accurate estimates. The
deflated values are stated in 2016 dollars. Restatement in the period from 2016–2021 dollars
can be done using the reinflators calculated here.

The following graphs extract trends, seasonalities and random fluctuations from the
figure of merit analyzed in this section.

Where GA factors are count data, Bayesian conjugate distribution model was assumed to
be beta-binomial with prior hyperparameters (α β) and posterior hyperparameters
αþPn

i¼1xi; β þ
Pn

i¼1Ni − α
Pn

i¼1xi
� �

for α successes and β failures for a sample {xi} of
Ni observations. I also assumed that volume was sufficient (I had ~8m observations at my
disposal) that central limit theorem convergence easily allowsme to assume the beta-binomial
data converges to Inverse Gamma – normal conjugate family. Closed-form posterior
probabilities for the beta-binomial can be computed:

pSS ∼

SS
BetaðαSS ; βSSÞ

pnoSS ∼

noSS
BetaðαnoSS ; βnoSSÞ

Pr pnoSS > pSSð Þ ¼
XαnoSS−1Þ
i¼0

Bð ðαSS þ i; βSS þ βnoSSÞ
ðBðβnoSSÞ þ iÞBð1þ i; βnoSSÞBðαSS ; βnoSSÞ

central limit theorem convergence was validated through exploratory testing of data and
models and is used to support the assumption that the Bayesian model is assumed to be
normal-normal with prior hyperparameters (μ, τ) and posterior hyperparameters

τ0μ0þτ
Pn

i¼1
xi

τ0þnτ ; τ0 þ nτ
� �

for sample {xi}

4. A/B testing methodologies
A/B tests compare two sample proportions and require that there are two groups and that the
data for each participant are dichotomous (Little, 1989). A/B testing has been applied
in situations with three different objectives:

(1) Making a binary choice based on a critical value of some sort as an alternative to
hypothesis testing or event studies,

(2) Performance ranking of two (or more) alternatives such as ranking marketing or
pricing strategies, and

(3) Risk assessment such as identifying transactions, investments, customers, strategies
and so forth that face more or less risk.

The context used in this paper applies A/B testing for risk assessments, and falls into the
categories of supervised classifiers discussed in the prior literature section, e.g. similar to the
usage of classifiers in Hand andHenley (1997), Jha et al. (2012), Ahfock et al. (2022) and Jha and
Westland (2013) as well as more recent neural network based classifiers for fraud detection
(e.g. see Westland, 2020b; 2019).

A/B tests, in one form or another, have been an essential part of scientific marketing since
the pioneering work of Claude Hopkins (Hopkins, 1923; Schorman, 2008) in the early 20th
century. The A/B test is standard operating procedure for the analysis of clinical trial data,
where study participants are randomly allocated to one of two experimental groups (typically
called A and B). A/B tests are common in fields such as biology, psychology and conversion
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rate optimization in online marketing. Similar, but less developed protocols are used in
finance, accounting and law, where they are called event studies, and control and treatment
groups are typically partitioned based on time of the event. Where A/B testing is applied,
researchers attempt to statistically infer whether and to what extent the experimental
condition has a higher success rate than the control condition. Practitioners can choose
between the frequentist and the Bayesian approaches, though because of mathematical
complexity, the Bayesian approach is seldom used. Nonetheless Gronau, Raj, and
Wagenmakers (2019) argue for the superiority of the Bayesian approach because:

(1) evidence can be obtained in favor of the null hypothesis;

(2) evidence can be updated continually, as the data accumulate; and

(3) expert knowledge can be taken into account.

A/B testing is a “Natural Experiment” involving customer experience which today has
standardized on the industry best-practice Bayesian A/B tests. Earlier studies applied
frequentist A/B testing (bucket testing or split-run testing) which compared two versions of a
subject’s response to variant A against variant B, and constructs a Neyman-Pearson
hypothesis test assessed on p-values. Frequentist A/B tests are inappropriate in loss
calculation, since they cannot generate loss numbers, only a “yes/no” assessment of whether
losses have occurred. Bayesian A/B tests are commonly used for understanding user
engagement and satisfaction of online features. Large social media sites like LinkedIn,
Facebook and Instagram continually employ Bayesian A/B testing to make user experiences
more successful and as a way to monetize their services. Bayesian A/B tests are the preferred
method for binary comparisons in marketing campaigns, business strategies and operations
choices in industry. Bayesian A/B tests do not require the analyst to claim an unreasonable
level of prior knowledge of events and their consequences, as for example, does the positing of
hypotheses for frequentist A/B tests. Bayesian A/B testing allows the data to speak for itself,
free of human biases.

Practitioners of frequentist A/B tests predominantly use p�value and Neyman-Pearson
hypothesis significance testing, which fails to meet the standards prescribed in Gronau et al.
(2019) and Box (1987). Of most concern is the fact that frequentist A/B tests cannot
distinguish between absence of evidence and evidence of absence (Keysers, Gazzola, &
Wagenmakers, 2020; Robinson, 2018). Evidence of absence means that the data support the
hypothesis that there is no effect (i.e. the two conditions do not differ); absence of evidence,
however, means that the data are inconclusive (Altman & Bland, 1995). With Neyman-
Pearson tests, the data cannot be tested sequentially without necessitating a correction for
multiple comparisons that depends on the sampling plan; this problem is delineated in Berger
and Wolpert (1988), Wagenmakers (2007) and Wagenmakers et al. (2018a, b). Camerer et al.
(2018) found that poor replicability do to frequentist approaches is especially a problem in
social science, finding that replicability varies between 57% and 67%) for studies relying on
complementary replicability indicators. In academic research, the low replicability of social
science outcomes may be considered a curiosity; but in business and clinical trials, it can
mean life or death differences for individuals and firms.

Many researchers in online marketing believe that it is efficient to act as soon as the data
provide evidence that is sufficiently compelling; and frequentist A/B test practitioners
repeatedly peek at interim results and stop data collection as soon as the p�value is smaller
than some predefined α-level (Goodson, 2014; Stolberg, 2006). However, this practice inflates
the Type I error rate which in practice invalidates Neyman-Pearson hypothesis testing
(Jennison & Turnbull, 1990; Wagenmakers, 2007). Additionally, Neyman-Pearson testing
does not allowmarketing professions to incorporate detailed expert knowledge. For example,
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online advertising campaigns often yield minuscule increases in conversion rates because of
poor reliability of statistical decisions (Johnson, Lewis, & Nubbemeyer, 2017). In contrast, the
Bayesian framework is conceptually straightforward, incorporates expert knowledge and
results in more informed statistical analyses (Lindley, 1993). Limitations in frequentist
statistics can be overcome by adopting a Bayesian data analysis approach (Kamalbasha &
Eugster, 2021) as described in the following synopsis of the method (Doorn et al., 2021).

Let nA denote the total number of observations and yA denote the number of successes for
group A. Let nB denote the total number of observations and yB denote the number of
successes for group B. The commonly used Bayesian A/B testing model is specified as
follows:

yA ∼BinomialðnA; θAÞ
yB ∼BinomialðnB; θBÞ

This model assumes that yA and yB follow independent binomial distributions with success
probabilities θA and θB. These success probabilities are assigned independent beta(α, β).

For example, with the data in hand onemay find that ρ5 0.15, and that the power to detect
a minuscule effect was only 0.20. However, power is a predata concept and consequently it
remains unclear to what extent the observed data affect our knowledge (Wagenmakers et al.,
2015). Moreover, the selection of the minuscule effect is often motivated by Bayesian
considerations (i.e. it is a value that appears plausible, based on substantive domain
knowledge). A particularly convenient conjugate family of distributions is the Beta
distribution –whenever a Beta prior is used and the observed data are binomially distributed,
the resulting posterior distribution is also a Beta distribution. Specifically, if the data consist
of s successes and f failures, the resulting posterior beta distribution equals Beta(αþs, βþf )
(Doorn, Meijer, Frampton, Barclay, & Boer, 2020). Beta distributions that encode the relative
prior plausibility of the values for θA and θB. In a Beta distribution, the α values can be
interpreted as counts of hypothetical “prior successes” and the β values can be interpreted as
counts of hypothetical “prior failures” (Lee & Wagenmakers, 2014):

θA ∼BetaðαA; βAÞ
θB ∼BetaðαB; βBÞ

Data from the A/B testing experiment update the two independent prior distributions to two
independent posterior distributions as dictated by Bayes’ rule:

pðθAjyA; nAÞ ¼ pðθAÞ3 pðyA; nAjθAÞ
pðyA; nAÞ

pðθBjyB; nBÞ ¼ pðθBÞ3 pðyB; nBjθBÞ
pðyB; nBÞ

where p(θA) and p(θB) are the prior distributions and p( yA, nAjθA) and p( yB, nBjθB) are the
likelihoods of the data given the respective parameters.

Bayesian learning, reflecting the evolution of probability fromprior to posterior is brought
about by the data. Bayesian A/B models learn from the data, and probabilities increases for
parameter values that predict the data well and decreases for parameter values that predict
the data poorly (Kruschke, 2013; Doorn et al., 2020 andWagenmakers, Morey, & Lee, 2016). In
practice we are interested in the difference δ 5 θA�θB between the success rates of the two
experimental groups, as this difference indicates whether the experimental condition shows
the desired effect (e.g. more sales).
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5. Results
Weconstructed a regressionmodel of sales usingGAmetrics.A sequence of searches resulted in
a final model with R2: 0.5803, Adjusted R2: 0.4849 and p-value: 9.793e�06. Results are
summarized in the table below. Table 3 reports the results of Baysian vs. frequentist A/B test
statistics. Note that the two sets of statistics are not perfectly comparable, given the differences
in structure of the tests. Specifically Bayesian tests provide a full reportingof posterior estimator
characteristics, while frequentist statistics provide only p-factors in a Neyman-Pearson setting.
Table 4 presents the key empirical findings of the analysis, reporting the probability that a
change in a firm’s website factor was caused by a change in sales due to competition from
fraudulent sites.

The Granger causality test is a statistical hypothesis test for determining whether one TS is
useful in forecasting another – a standard econometric definition of “causality”. A TS X is said
to Granger-cause Y if it can be shown through a series of t-tests and F-tests on lagged values of
X that those X values provide statistically significant information about future values of Y.

One retains in this regression all lagged values of x that are individually significant
according to their t-statistics, provided that collectively they add explanatory power to the
regression according to an F-test (whose null hypothesis is no explanatory power jointly
added by the x’s). In my tests of the monthly data, the shortest lag was 1 and longest was 6. A
lag of 6 months would test for the influence of a change in web traffic on the amount of sales
six months later.

GA factor
p�value
A/B

μ
A/B

σ2

A/B
μ-Low
on CI

μ-High
on CI

σ2-Low
on CI

σ2-High
on CI

μ for
post�
E(loss)

σ2 for
post�
E(loss)

Sales 0.204 0.203 0.136 �13.296 9.389 �0.642 0.234 �1.424 0.643
New visitors 0.289 0.287 0.330 �7.008 5.365 �0.544 0.566 1.754 0.332v
Users 0.276 0.276 0.872 �8.426 6.351 �0.181 1.827 �0.895 0.030
Bounces 0.058 0.058 0.791 �3.674 0.168 �0.278 1.494 �1.163 0.056
Bounce rate 0.002 0.001 0.995 �3.185 �1.153 0.449 3.983 0.000 0.001
Average session
duration

0.173 0.172 0.999 �8.356 4.466 0.975 5.847 �1.308 0.000

Session duration 0.183 0.180 1.000 �8.668 4.820 0.985 5.804 �2.311 0.000
Unique dimension
combinations

0.043 0.042 0.788 �3.441 �0.153 �0.274 1.480 �3.903 0.056

Entrance rate 0.301 0.300 0.992 �10.351 8.365 0.351 3.650 �0.074 0.001
Time on page 0.182 0.181 0.995 �8.339 4.769 0.455 4.001 �2.471 0.001

F-statistic Prob(>F)
Prob(Change in this site statistic

caused a change in sales)

new_vis 2.1968627 0.0659050 93.41%
users 1.2412285 0.3087493 69.13%
bounces 1.0421771 0.4147192 58.53%
bounceRate 2.2119510 0.0642794 93.57%
sessionDuration 1.5073274 0.2036900 79.63%
avgSessionDuration 1.5149517 0.2012254 79.88%
uniqueDimensionCombinations 0.5693141 0.7519153 24.81%
entranceRate 1.2733206 0.2939657 70.60%
timeOnPage 2.8037845 0.0242251 97.58%
avgTimeOnPage 1.2170068 0.3203199 67.97%

Table 3.
A/B testing Results

from both Frequentist
and Bayesian A/B

Testing

Table 4.
Probability that a

change in the the firm’s
Website statistics was
caused by a change in

sales due to
competition from
fraudulent sites
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The null hypothesis that x does not Granger-cause y is accepted if and only if no lagged
values of x are retained in the regression. This is tested using the Wald test to assess
constraints on statistical parameters based on the weighted distance between the
unrestricted estimate and its hypothesized value under the null hypothesis, where the
weight is the precision of the estimate. The methods used in this study for Bayesian A/B
testing including prior elicitation options were based on Kass and Vaidyanathan (1992).

In the Bayesian A/B analysis, (B-blue) represents data from the period in which fraudulent
sites were active, and (A-orange) represents data from outside that period B�A55>
reduction in traffic due to fraudulent sites; negative implies increased traffic credible interval
on (A�B)/B for interval length(s) (0.9, 0.9).

Table 3 reports the findings of this research. Note that Bayesian A/B testing yields a
plethora of measurements of the posterior distribution, while frequentist A/B tests, being
Neyman-Pearson hypothesis tests, offer only the p�value. The p�value for frequentist A/B
tests is the probability of obtaining test results at least as extreme as the result actually
observed, under the assumption that there is no difference between A and B (Hubbard &
Lindsay, 2008; Wasserstein & Lazar, 2016). Unfortunately, a precise meaning of p-value is
hard to grasp, and misuse is widespread and has been a major topic in metascience (Munaf�o,
Nosek, Bishop, Button, & Chambers, 2017; Wasserstein & Lazar, 2016). While misuse of
p�values in scholarly articles may simply be grist for academic debate, the uncertainty
surrounding the meaning of p�values in business analytics actually can cost firms money.
This is one of the conclusions that one may draw from Table 3.

In Table 3, GA factor refers to the GA metric tracked for the site over the period of the
research dataset. The p�value is the reuslt of frequentist A/B testing and is the probability of
obtaining test results at least as extreme as the result actually observed, under the
assumption that there is no difference between A transactions and B transactions.
Distribution statistics (μ, σ2) are given for posterior distributions, direct probabilities that
A>B (by percent lift), credible intervals on (A�B)/B and the posterior expected loss. Credible
intervals are the Bayesian counterpart to confidence intervals.

The following summarizes themain effects of fraudulent websites on the firm’sweb traffic
discovered through Bayesian A/B testing.

New Visitors: Each new visitor to the firm site is worth $84.44, and the fraudulent site
reduced the number of new visitors by 2472 per month. GA differentiates between new and
returning users based on visitors’ browser cookies.

Users: a user is a visitor who has initiated a session on the firm’s website. These rose
during the period the fraudulent sites were in existence. One explanation would be confusion
spawned by the fraudulent websites, where potential customers looking to buy a roof were
confronted with irrelevant but sensationalist information and were curious enough to visit
the firm’s site. Since the impact of more users appears to slightly decrease the potential sales
dollars (perhaps from spurious site visits or searches), both of these could statistics may have
been influenced by the existence of the fraudulent sites.

Customer Bounces: bounces and bounceRate increased during the period that the
fraudulent sites were active, suggesting that there were some potential customers that left the
firm’s site immediately after visiting the landing page, costing firm advertising dollars
without generating sales. Each additional bounce cost firm $33.99, and the fraudulent sites
compelled additional customer bounces of 1581 per month.

CustomerTime on Site: sessionDuration and aveSessionDuration number ofminutes spent
on the site during the period that the fraudulent sites were active fell, but these metrics had
very small unit contributions to sales, and the estimates of these unit contributions were only
barely statistically significant. The fraudulent sites clearly had a negative impact on time
spent on the site due to the substantial increase in bounces, i.e. customers visited the landing
page, and immediately left the site.
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Customer Time on a Page: timeOnPage is the absolute time spent looking at the firm’s
pages during the existence of the fraudulent sites was reduced by 104,429 minutes per month
during the period the fraudulent sites were in existence. avgTimeOnPage:_is the average time
spent looking at the firm’s pages during the existence of the fraudulent sites reduced by
57,039 minutes per month during the period the fraudulent sites were in existence. Average
time differs from absolute time on the page during the period of the fraudulent site, because of
the increase in bounces.

Customer Entrance on Pages other than the Landing Page: entranceRate reflects where GA
records an entrance for each page that a user begins a new session on. The number of
entrances given for a specific page shows howmany users began their sessionwith that page.
This should not be confused with visiting the landing or entrance (top) Page. Review of the
data suggests that landing inside the firm’s site occurs mainly with organic searches, and
probably reflects the Google indexing of the firm’s site. These rose during the period the
fraudulent sites were in existence, suggesting that visitors may have visited the site through
a random, likely organic Google search rather than an advertising link or referral.

Unique Combinations of Customer Search: uniqueDimensionsCombinations or unique
dimension combinations counts the number of unique dimension-value combinations for
each dimension. For example, if you have the dimensions: a.Region, b.Language and c.Mobile
Device Info, then GA counts the number of times it sees the same combination of dimension
values for each row in the report. It appears that the existence of fraudulent sites had little
effect on this metric, since it is relatively complex and reflects their shopping choices during
and after their decision to purchase a metal roof. The unit contribution of this metric is large,
but it represents the choices already made by committed firm customers.

Sales: Perhaps the most cogent statistic yielded by Bayesian A/B tests of the empirical
data was that showing loss of sales during the existence of the fraudulent websites. Here we
can use the posterior distribution to directly compute the expected loss from expected sales
during a period. Our calculations based on the above analysis yielded:

(1) 2019-12-01 $544,549 (less than expected)

(2) 2020-10-01 $2,208,775 (more than expected)

(3) 2021-03-01 $3,003,636 (more than expected)

This not only highlighted the existence of fraud, but provided specific figures on the
magnitude of that fraud. This analysis developed a model to show that during the
25.56 month fraudulent sites operating period between April 7, 2018 and May 13 2020, their
activities reduced visits, reduced time on the firm’s site and reduced conversions to the extent
that firm lost an estimated $5,474,856 of sales revenue during the period. These direct effects
were captured in the GA firm website metrics. I built a regression model and validated that
these changes in GA site metrics directly caused the reduction in sales during the period of
operation of fraudulent websites.

6. Conclusions and discussion
The regression model used to compute the firm’s loss of sales due to changes in the GA
metrics during the period the fraudulent sites were active, explained 60% of sales variability
(with the rest attributable to word of mouth, repeat customers and so forth). The firm’s
website was the main driver of the firm’s sales during the fraudulent period.

Direct analysis of the firm’s sales TS estimated that they lost $5,474,856 of sales revenue
during the 25.56 month fraudulent site period between April 7, 2018 and May 13 2020 when
fraudsters posted and managed several websites with fabricated domain names and
derogatory content.
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Indirect analysis from predictions of the firm’s sales revenue based on actual GA metrics,
and using the regression model developed in this analysis, estimated a 95% prediction
interval of [0, $7,787,300] – i.e. prediction limits validate the direct estimate developed in the
analysis and show that the loss of $5,474,856 of sales revenue during the 25.56 month
fraudulent site period was caused by fraudulent sites an URLs interfering with customer
visits to the firm’s website.

7. Potential applications of the research findings and managerial implications
The massive transaction volumes of e-commerce retailers – e.g. Amazon averages 1.6m
transactions per day – automated fraud detection is of intense interest to e-commerce firms.
There simply is no way that human auditors could effectively monitor that volume of sales.
Automation, though, is predicated on efficient and effective algorithms. The current research
has shown the particular appropriateness of BayesianA/B testing for assessing the economic
impact of fraud and identifying where to investigate fraud.

Though themathematics and its application forA/B tests have beenwell understood, their
application in fraud detection has to this point been almost nonexistent. This is partly due to
most commercial applications of A/B testing using frequentist algorithms, because they are
readily derived from Neyman-Pearson hypothesis testing. This has been unfortunate, as
Bayesian A/B testing, unlike frequentist approaches not only allows ready computation of
the economic consequences (the difference between posterior means) of fraudulent
transactions, but also allows methods to precisely measure risk (i.e. the tail value at risk,
or the integral of the tail of the posterior distribution over the appropriate loss function).

This research does move forward our understanding of how to manage A/B tests in a real
e-commerce environment. Table 5 summarizes these in terms of the qualitative
characteristics of Bayesian vs. frequentist statistical approaches. The posterior
distribution of each of the GA factors provides a very conservative assessment of
posterior expected loss and credible intervals (similar to confidence limits in fiducial
inference). In frequentist statistics – the statistics that today are most often used in electronic
marketA/B testing – the alternative to the posterior distribution is the p�value – probabilities
of obtaining test results at least as extreme as the result actually observed, under the
assumption that there is no difference between A and B (Hubbard & Lindsay, 2008;
Wasserstein&Lazar, 2016). Unfortunately, a precisemeaning of p�value is hard to grasp and
misuse is widespread and has been a major topic in metascience (Munaf�o et al., 2017;
Wasserstein & Lazar, 2016). While misuse of p�values in scholarly articles may simply be
grist for academic debate, the uncertainty surrounding the meaning of p�values in business
analytics actually can cost firms money. This is the main conclusions that one should draw
from this research. Bayesian A/B tests of the data not only yielded a clear delineation of the
timing and impact of the IP fraud, but calculated the loss of sales dollars, traffic and time on
the firm’s website, with precise confidence limits. Frequentist A/B testing identified fraud in
bounce rate at 5% significance, and bounce at 10% significance, but was unable to ascertain
fraud at the standard significance cutoffs for scientific studies. From a managerial
standpoint, being able to only weakly conclude or reject the existence of fraud offered in
frequentist p�values (particularly from a dataset of ~8m transactions) pales in comparison to
the rich set of options for reporting loss and damage to reputation and traffic that is offered by
Bayesian A/B testing.

The empirical research in this paper provides a guide for what one might expect as
“typical” values for the empirical parameters of the Bayesian vs Frequentist approaches.
These are given in Table 6.

Within this particular Bayesian A/B detective control, we also need to consider that there
may be improvements to be made in confidence and prediction intervals that measure the
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Objective of fraud audit Bayesian Frequentist

Controls
Preventive controls over fraud
(passive)

No No

Detective control (group or individual
transactions)

Yes Yes

Corrective control allowing lost cost,
accurate recovery from fraud

No No

Economics
Able to identify transaction sets that
are fraudulent

Yes Yes

Objective is maximizing net savings
from fraud

Yes No, p�values only estimate the probability that our
decision is correct for a group of transactions being
fraudulent

Able to apply firm’s actual loss
function

Yes No, p�values only estimate the probability that our
decision is correct for a group of transactions being
fraudulent

Able to calculate loss under
competing decisions

Yes No, p�values only estimate the probability that our
decision is correct for a group of transactions being
fraudulent

Able to compute fraud cost Yes No, p�values only estimate the probability that our
decision is correct for a group of transactions being
fraudulent

Able to calculate loss under
competing decisions

Yes No, p�values only estimate the probability that our
decision is correct for a group of transactions being
fraudulent

Operations
Generalist algorithm Yes No, requires a hypothesis testing framework
Empirical fraud detection
methodology

Yes Yes

Supports labeling of individual
transactions as potentially fraudulent

Yes Yes, with limitations

Can be scaled up for large transaction
volumes

Yes Yes, though p�values for a decision are less and less
reliable as the application is scaled up to larger
transaction numbers

Simple and low cost to implement Yes No, requires a hypothesis testing framework
Highly efficient, low cost transaction
processing

Yes Yes

Many tools available for
implementation

No Yes

Comparison with competitive methods
Autoencoders Competitive Not Competitive
Benford tests Competitive Not Competitive
Sarbanes-Oxley tests Competitive Competitive for Section 302 tests, but not for Section

404 tests
Supervised Rule-based methods Competitive Competitive
Supervised Tree-based algorithms Competitive Competitive
Supervised Methods with
misclassification

Competitive Competitive

Unsupervised classification methods Not competitive,
requires labeling

Not competitive, requires labeling

p�value
A/B

μ
A/B σ2 A/B

μ-Low
on CI

μ-High
on CI

σ2-Low
on CI

σ2-High
on CI

μ for post�
E(loss)

σ2 for post�
E(loss)

0.1711 0.17 0.7898 �7.4744 4.2387 0.1296 2.8886 �1.1795 0.112

Table 5.
Comparative

advantages of
Bayesian vs
Frequentist

approaches for fraud
auditing

Table 6.
Comparative average

statistics for the
research dataset
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accuracy of models in estimating a mean, or predicting a new value, respectively. Intervals
allow one to estimate a range of values that can be said with reasonable confidence (typically
95%) contains the true population parameter. As this analysis is focused on the regression
model that is used to predict firm sales fromGAmetrics, I am interested here in computing the
prediction interval. I have used the industry standard 95% prediction intervals – i.e. 19 out of
20 times, our answer will be correct, a value that was set as a scientific best-practice early in
the 20th century by the statistician Ronald Fisher (Fisher, 1932), the implications of which are
studied at length in (Stigler, 2008). Sales clearly cannot be less than zero, and thus lower limits
were truncated to zero. In addition to the arbitrary selection of significance equal to 0.05 due
to Fisher (which was initially only a suggestion), more recently (Cohen, 2016) has suggested
that power of tests should be set at 0.80. In practice, TypeI and TypeII choices should be
dictated by the loss function, but these choices of cut-offs for decision making are too often
applied without any thought to loss (or perhaps to avoid decisions about the loss function).

8. Limitations and future research
The research presented in this paper is only one component of a complete fraudmanagement
operation in e-commerce. The research provides amethod of automatedmonitoring of groups
of transactions to identify ones with a high probability of being fraudulent. They are
detective controls that require a detailed follow-up investigation, and implementation of
corrective controls to repair the damage done by the fraud. As such, the algorithms developed
and tested in this paper should not be seen as a complete solution; rather they are an
exceptionally efficient and informative part of automated detective controls.

The regression model used to compute the firm’s loss of sales due to changes in the GA
metrics during the period the fraudulent sites were active, explained 60% of sales variability
(with the rest attributable to word of mouth, repeat customers and so forth). The firm’s
website was the main driver of the firm’s sales during the fraudulent period. But one must
also recognize that 40% of sales variability was not explained and that is a limitation that can
be improved on in future research.
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